34,543 research outputs found

    Laboratory upwelled radiance and reflectance spectra of Kerr reservoir sediment waters

    Get PDF
    Reflectance, chromaticity, and several other physical and chemical properties were measured for various water mixtures of bottom sediments taken from two sites at Kerr Reservoir, Virginia. Mixture concentrations ranged from 5 to 1000 ppm by weight of total suspended solids (TSS) in filtered deionized tap water. The two sets of radiance and reflectance spectra obtained were similar in shape and magnitude for comparable values of TSS. Upwelled reflectance was observed to be a nonlinear function of TSS with the degree of curvature a function of wavelength. Sediment from the downstream site contained a greater amount of particulate organic carbon than from the upstream site. No strong conclusions can be made regarding the effects of this difference on the radiance and reflectance spectra. Near-infrared wavelengths appear useful for measuring highly turbid water with concentrations up to 1000 ppm or more. Chromaticity characteristics do not appear useful for monitoring sediment loads above 150 ppm

    Weakly Nonlinear Analysis of Electroconvection in a Suspended Fluid Film

    Full text link
    It has been experimentally observed that weakly conducting suspended films of smectic liquid crystals undergo electroconvection when subjected to a large enough potential difference. The resulting counter-rotating vortices form a very simple convection pattern and exhibit a variety of interesting nonlinear effects. The linear stability problem for this system has recently been solved. The convection mechanism, which involves charge separation at the free surfaces of the film, is applicable to any sufficiently two-dimensional fluid. In this paper, we derive an amplitude equation which describes the weakly nonlinear regime, by starting from the basic electrohydrodynamic equations. This regime has been the subject of several recent experimental studies. The lowest order amplitude equation we derive is of the Ginzburg-Landau form, and describes a forward bifurcation as is observed experimentally. The coefficients of the amplitude equation are calculated and compared with the values independently deduced from the linear stability calculation.Comment: 26 pages, 2 included eps figures, submitted to Phys Rev E. For more information, see http://mobydick.physics.utoronto.c

    Vapor-screen technique for flow visualization in the Langley Unitary Plan Wind Tunnel

    Get PDF
    The vapor-screen technique for flow visualization, as developed for the Langley Unitary Plan Wind Tunnel, is described with evaluations of light sources and photographic equipment. Test parameters including dew point, pressure, and temperature were varied to determine optimum conditions for obtaining high-quality vapor-screen photographs. The investigation was conducted in the supersonic speed range for Mach numbers from 1.47 to 4.63 at model angles of attack up to 35 deg. Vapor-screen photographs illustrating various flow patterns are presented for several missile and aircraft configurations. Examples of vapor-screen results that have contributed to the understanding of complex flow fields and provided a basis for the development of theoretical codes are presented with reference to other research

    Laboratory measurements of physical, chemical, and optical characteristics of Lake Chicot sediment waters

    Get PDF
    Reflectance, chromaticity, diffuse attenuation, beam attenuation, and several other physical and chemical properties were measured for various water mixtures of lake bottom sediment. Mixture concentrations range from 5 ppm to 700 ppm by weight of total suspended solids in filtered deionized tap water. Upwelled reflectance is a nonlinear function of remote sensing wave lengths. Near-infrared wavelengths are useful for monitoring highly turbid waters with sediment concentrations above 100 ppm. It is found that both visible and near infrared wavelengths, beam attenuation correlates well with total suspended solids ranging over two orders of magnitude

    Electroconvection in a Suspended Fluid Film: A Linear Stability Analysis

    Full text link
    A suspended fluid film with two free surfaces convects when a sufficiently large voltage is applied across it. We present a linear stability analysis for this system. The forces driving convection are due to the interaction of the applied electric field with space charge which develops near the free surfaces. Our analysis is similar to that for the two-dimensional B\'enard problem, but with important differences due to coupling between the charge distribution and the field. We find the neutral stability boundary of a dimensionless control parameter R{\cal R} as a function of the dimensionless wave number κ{\kappa}. R{\cal R}, which is proportional to the square of the applied voltage, is analogous to the Rayleigh number. The critical values Rc{{\cal R}_c} and κc{\kappa_c} are found from the minimum of the stability boundary, and its curvature at the minimum gives the correlation length ξ0{\xi_0}. The characteristic time scale τ0{\tau_0}, which depends on a second dimensionless parameter P{\cal P}, analogous to the Prandtl number, is determined from the linear growth rate near onset. ξ0{\xi_0} and τ0{\tau_0} are coefficients in the Ginzburg-Landau amplitude equation which describes the flow pattern near onset in this system. We compare our results to recent experiments.Comment: 36 pages, 7 included eps figures, submitted to Phys Rev E. For more info, see http://mobydick.physics.utoronto.ca

    Annular electroconvection with shear

    Full text link
    We report experiments on convection driven by a radial electrical force in suspended annular smectic A liquid crystal films. In the absence of an externally imposed azimuthal shear, a stationary one-dimensional (1D) pattern consisting of symmetric vortex pairs is formed via a supercritical transition at the onset of convection. Shearing reduces the symmetries of the base state and produces a traveling 1D pattern whose basic periodic unit is a pair of asymmetric vortices. For a sufficiently large shear, the primary bifurcation changes from supercritical to subcritical. We describe measurements of the resulting hysteresis as a function of the shear at radius ratio η∼0.8\eta \sim 0.8. This simple pattern forming system has an unusual combination of symmetries and control parameters and should be amenable to quantitative theoretical analysis.Comment: 12 preprint pages, 3 figures in 2 parts each. For more info, see http://mobydick.physics.utoronto.c
    • …
    corecore