11,661 research outputs found

    Corrections to Scaling in the Phase-Ordering Dynamics of a Vector Order Parameter

    Full text link
    Corrections to scaling, associated with deviations of the order parameter from the scaling morphology in the initial state, are studied for systems with O(n) symmetry at zero temperature in phase-ordering kinetics. Including corrections to scaling, the equal-time pair correlation function has the form C(r,t) = f_0(r/L) + L^{-omega} f_1(r/L) + ..., where L is the coarsening length scale. The correction-to-scaling exponent, omega, and the correction-to-scaling function, f_1(x), are calculated for both nonconserved and conserved order parameter systems using the approximate Gaussian closure theory of Mazenko. In general, omega is a non-trivial exponent which depends on both the dimensionality, d, of the system and the number of components, n, of the order parameter. Corrections to scaling are also calculated for the nonconserved 1-d XY model, where an exact solution is possible.Comment: REVTeX, 20 pages, 2 figure

    Velocity Distribution of Topological Defects in Phase-Ordering Systems

    Full text link
    The distribution of interface (domain-wall) velocities v{\bf v} in a phase-ordering system is considered. Heuristic scaling arguments based on the disappearance of small domains lead to a power-law tail, Pv(v)vpP_v(v) \sim v^{-p} for large v, in the distribution of vvv \equiv |{\bf v}|. The exponent p is given by p=2+d/(z1)p = 2+d/(z-1), where d is the space dimension and 1/z is the growth exponent, i.e. z=2 for nonconserved (model A) dynamics and z=3 for the conserved case (model B). The nonconserved result is exemplified by an approximate calculation of the full distribution using a gaussian closure scheme. The heuristic arguments are readily generalized to conserved case (model B). The nonconserved result is exemplified by an approximate calculation of the full distribution using a gaussian closure scheme. The heuristic arguments are readily generalized to systems described by a vector order parameter.Comment: 5 pages, Revtex, no figures, minor revisions and updates, to appear in Physical Review E (May 1, 1997

    Non-equilibrium Phase-Ordering with a Global Conservation Law

    Full text link
    In all dimensions, infinite-range Kawasaki spin exchange in a quenched Ising model leads to an asymptotic length-scale L(ρt)1/2t1/3L \sim (\rho t)^{1/2} \sim t^{1/3} at T=0T=0 because the kinetic coefficient is renormalized by the broken-bond density, ρL1\rho \sim L^{-1}. For T>0T>0, activated kinetics recovers the standard asymptotic growth-law, Lt1/2L \sim t^{1/2}. However, at all temperatures, infinite-range energy-transport is allowed by the spin-exchange dynamics. A better implementation of global conservation, the microcanonical Creutz algorithm, is well behaved and exhibits the standard non-conserved growth law, Lt1/2L \sim t^{1/2}, at all temperatures.Comment: 2 pages and 2 figures, uses epsf.st

    Survival of a diffusing particle in an expanding cage

    Full text link
    We consider a Brownian particle, with diffusion constant D, moving inside an expanding d-dimensional sphere whose surface is an absorbing boundary for the particle. The sphere has initial radius L_0 and expands at a constant rate c. We calculate the joint probability density, p(r,t|r_0), that the particle survives until time t, and is at a distance r from the centre of the sphere, given that it started at a distance r_0 from the centre.Comment: 5 page

    Dynamics of Ordering of Heisenberg Spins with Torque --- Nonconserved Case. I

    Full text link
    We study the dynamics of ordering of a nonconserved Heisenberg magnet. The dynamics consists of two parts --- an irreversible dissipation into a heat bath and a reversible precession induced by a torque due to the local molecular field. For quenches to zero temperature, we provide convincing arguments, both numerically (Langevin simulation) and analytically (approximate closure scheme due to Mazenko), that the torque is irrelevant at late times. We subject the Mazenko closure scheme to systematic numerical tests. Such an analysis, carried out for the first time on a vector order parameter, shows that the closure scheme performs respectably well. For quenches to TcT_c, we show, to O(ϵ2){\cal O}(\epsilon^2), that the torque is irrelevant at the Wilson-Fisher fixed point.Comment: 13 pages, REVTEX, and 19 .eps figures, compressed, Submitted to Phys. Rev.

    The Stability of the Replica Symmetric State in Finite Dimensional Spin Glasses

    Full text link
    According to the droplet picture of spin glasses, the low-temperature phase of spin glasses should be replica symmetric. However, analysis of the stability of this state suggested that it was unstable and this instability lends support to the Parisi replica symmetry breaking picture of spin glasses. The finite-size scaling functions in the critical region of spin glasses below T_c in dimensions greater than 6 can be determined and for them the replica symmetric solution is unstable order by order in perturbation theory. Nevertheless the exact solution can be shown to be replica-symmetric. It is suggested that a similar mechanism might apply in the low-temperature phase of spin glasses in less than six dimensions, but that a replica symmetry broken state might exist in more than six dimensions.Comment: 5 pages. Modified to include a paragraph on the relation of this work to that of Newman and Stei

    Growth Laws for Phase Ordering

    Full text link
    We determine the characteristic length scale, L(t)L(t), in phase ordering kinetics for both scalar and vector fields, with either short- or long-range interactions, and with or without conservation laws. We obtain L(t)L(t) consistently by comparing the global rate of energy change to the energy dissipation from the local evolution of the order parameter. We derive growth laws for O(n) models, and our results can be applied to other systems with similar defect structures.Comment: 12 pages, LaTeX, second tr

    Lifshitz-Slyozov Scaling For Late-Stage Coarsening With An Order-Parameter-Dependent Mobility

    Full text link
    The coarsening dynamics of the Cahn-Hilliard equation with order-parameter dependent mobility, λ(ϕ)(1ϕ2)α\lambda(\phi) \propto (1-\phi^2)^\alpha, is addressed at zero temperature in the Lifshitz-Slyozov limit where the minority phase occupies a vanishingly small volume fraction. Despite the absence of bulk diffusion for α>0\alpha>0, the mean domain size is found to grow as t1/(3+α) \propto t^{1/(3+\alpha)}, due to subdiffusive transport of the order parameter through the majority phase. The domain-size distribution is determined explicitly for the physically relevant case α=1\alpha = 1.Comment: 4 pages, Revtex, no figure

    Phase-ordering of conserved vectorial systems with field-dependent mobility

    Full text link
    The dynamics of phase-separation in conserved systems with an O(N) continuous symmetry is investigated in the presence of an order parameter dependent mobility M(\phi)=1-a \phi^2. The model is studied analytically in the framework of the large-N approximation and by numerical simulations of the N=2, N=3 and N=4 cases in d=2, for both critical and off-critical quenches. We show the existence of a new universality class for a=1 characterized by a growth law of the typical length L(t) ~ t^{1/z} with dynamical exponent z=6 as opposed to the usual value z=4 which is recovered for a<1.Comment: RevTeX, 8 pages, 13 figures, to be published in Phys. Rev.
    corecore