6 research outputs found

    A Review of Deep Learning-Based Methods for Pedestrian Trajectory Prediction

    No full text
    Pedestrian trajectory prediction is one of the main concerns of computer vision problems in the automotive industry, especially in the field of advanced driver assistance systems. The ability to anticipate the next movements of pedestrians on the street is a key task in many areas, e.g., self-driving auto vehicles, mobile robots or advanced surveillance systems, and they still represent a technological challenge. The performance of state-of-the-art pedestrian trajectory prediction methods currently benefits from the advancements in sensors and associated signal processing technologies. The current paper reviews the most recent deep learning-based solutions for the problem of pedestrian trajectory prediction along with employed sensors and afferent processing methodologies, and it performs an overview of the available datasets, performance metrics used in the evaluation process, and practical applications. Finally, the current work exposes the research gaps from the literature and outlines potential new research directions

    Combined pattern search optimization of feature extraction and classification parameters in facial recognition.

    No full text
    International audienceConstantly, the assumption is made that there is an independent contribution of the individual feature extraction and classifier parameters to the recognition performance. In our approach, the problems of feature extraction and classifier design are viewed together as a single matter of estimating the optimal parameters from limited data. We propose, for the problem of facial recognition, a combination between an Interest Operator based feature extraction technique and a k-NN statistical classifier having the parameters determined using a pattern search based optimization technique. This approach enables us to achieve both higher classification accuracy and faster processing time

    The Alpha-Beta Family of Filters to Solve the Threshold Problem: A Comparison

    No full text
    Typically, devices work to improve life quality, measure parameters, and make decisions. They also signalize statuses, and take actions accordingly. When working, they measure different values. These are to be compared against thresholds. Some time ago, vision systems came into play. They use camera(s) to deliver(s) images to a processor module. The received images are processed to perform detections (typically, they focus to detect objects, pedestrians, mopeds, cyclists, etc.). Images are analyzed and thresholds are used to compare the computed values. The important thing is that images are affected by noise. Therefore, the vision system performance can be affected by weather in some applications (for example, in automotive). An interesting case in this domain is when the measured/computed values show small variations near the threshold (not exceeding) but very close to it. The system is not able to signalize/declare a state in this case. It is also important to mention that changing the threshold does not guarantee solving the problem in any future case, since this may happen again. This paper proposes the Alpha-Beta family of filters as a solution to this problem. The members can track a signal based on measured values. This reveals errors when the tracked-signal’s first derivative changes sign. These errors are used in this paper to bypass the threshold problem. Since these errors appear in both situations (when the first derivative decreases from positive to negative and increases from negative to positive), the proposed method works when the observed data are in the vicinity of the threshold but above it

    Hardware and Software Integration of an Electrophoretic display on a smart meter

    No full text
    Electronic and smart electricity meters traditionally use as user interface liquid crystal displays due to low cost and proven technology. This paper presents the integration of a flexible electrophoretic display on a smart meter and the possible use cases of such a display. The two main benefit of EPD displays are image retention which can be used as read without power feature and lower power consumption compared to LCD for smart meters. The smart meters available on the market use batteriesor super capacitors for the read without power feature and require each 20ms tenths of mA to displayinformation on the LCD
    corecore