4 research outputs found

    Effect of the Notch-to-Depth Ratio on the Post-Cracking Behavior of Steel-Fiber-Reinforced Concrete

    Get PDF
    Concrete barely possesses tensile strength, and it is susceptible to cracking, which leads to a reduction of its service life. Consequently, it is significant to find a complementary material that helps alleviate these drawbacks. The aim of this research was to determine analytically and experimentally the effect of the addition of the steel fibers on the performance of the post-cracking stage on fiber-reinforced concrete, by studying four notch-to-depth ratios of 0, 0.08, 0.16, and 0.33. This was evaluated through 72 bending tests, using plain concrete (control) and fiber-reinforced concrete with volume fibers of 0.25% and 0.50%. Results showed that the specimens with a notch-to-depth ratio up to 0.33 are capable of attaining a hardening behavior. The study concludes that the increase in the dosage leads to an improvement in the residual performance, even though an increase in the notch-to-depth ratio has also occurred

    Flexural Stiffness and Crack Width of Partially Prestressed Beams with Unbonded Tendons

    No full text
    The original concept of “Total Prestress” consists of creating compressions in concrete without generating tension stresses for service load, while in "Partially Prestressed” elements, tensions are allowed in the service stage, which would produce some cracking depending on applied loads that will be taken with non-prestressed reinforcement. Using criteria and design recommendations can guarantee maximum flexural capacity and admissible serviceability requirements of partially prestressed elements; however, there is insufficient research for estimating more accurately the required parameters for the design and review of these types of elements. Because of this, the present investigation consisted in the realization of experimental studies in continuous partially prestressed beams with unbonded tendons for the evaluation of the flexural behavior for different stages of load determining the actual stresses and the strains taking into account the structural stiffness decrease and its effect on deflections. The dimensions of the specimens were selected based on common dimensions presented on slabs. The tested specimens considered variables such as the relationship between the length of the continuous spans, the cross-section, and the partial prestressing ratio. Afterward, equations were proposed to predict the decrease in the structural stiffness, depending on the degree of cracking, the type of cross-section, the partial prestressing ratio, and the magnitude of the applied load and the tension and compression stresses to estimate the probable deflections for a particular loading stage. The crack width equation presented a difference of −16% to +18% with respect to the experimental data, while the flexural stiffness equation showed a highly accurate correlation to the experimental data

    Electrochemical Corrosion of Galvanized Steel in Binary Sustainable Concrete Made with Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF) Exposed to Sulfates

    No full text
    This research evaluates the behavior corrosion of galvanized steel (GS) and AISI 1018 carbon steel (CS) embedded in conventional concrete (CC) made with 100% CPC 30R and two binary sustainable concretes (BSC1 and BSC2) made with sugar cane bagasse ash (SCBA) and silica fume (SF), respectively, after 300 days of exposure to 3.5 wt.% MgSO4 solution as aggressive medium. Electrochemical techniques were applied to monitor corrosion potential (Ecorr) according to ASTM C-876-15 and linear polarization resistance (LPR) according to ASTM G59 for determining corrosion current density (icorr). Ecorr and icorr results indicate after more than 300 days of exposure to the sulfate environment (3.5 wt.% MgSO4 solution), that the CS specimens embedded in BSC1 and BSC2 presented greater protection against corrosion in 3.5 wt.% MgSO4 than the specimens embedded in CC. It was also shown that this protection against sulfates is significantly increased when using GS reinforcements. The results indicate a higher resistance to corrosion by exposure to 3.5 wt.% magnesium sulfate two times greater for BSC1 and BSC2 specimens reinforced with GS than the specimens embedding CS. In summary, the combination of binary sustainable concrete with galvanized steel improves durability and lifetime in service, in addition to reducing the environmental impact of the civil engineering structures
    corecore