44 research outputs found

    Linear Assignment Maps for Correlated System-Environment States

    Get PDF
    An assignment map is a mathematical operator that describes initial system-environment states for open quantum systems. We reexamine the notion of assignments, introduced by Pechukas, and show the conditions assignments can account for correlations between the system and the environment, concluding that assignment maps can be made linear at the expense of positivity or consistency is more reasonable. We study the role of other conditions, such as consistency and positivity of the map, and show the effects of relaxing these. Finally, we establish a connection between the violation of positivity of linear assignments and the no-broadcasting theorem.Comment: 6 pages, 1 tabl

    Unification of witnessing initial system-environment correlations and witnessing non-Markovianity

    Full text link
    We show the connection between a witness that detects dynamical maps with initial system-environment correlations and a witness that detects non-Markovian open quantum systems. Our analysis is based on studying the role that state preparation plays in witnessing violations of contractivity of open quantum system dynamics. Contractivity is a property of some quantum processes where the trace distance of density matrices decrease with time. From this, we show how a witness of initial-correlations is an upper bound to a witness of non-Markovianity. We discuss how this relationship shows further connections between initial system-environment correlations and non-Markovianity at an instance of time in open quantum systems.Comment: 5 page

    Vanishing quantum discord is not necessary for completely-positive maps

    Full text link
    The description of the dynamics of a system that may be correlated with its environment is only meaningful within the context of a specific framework. Different frameworks rely upon different assumptions about the initial system-environment state. We reexamine the connections between complete-positivity and quantum discord within two different sets of assumptions about the relevant family of initial states. We present an example of a system-environment state with non-vanishing quantum discord that leads to a completely-positive map. This invalidates an earlier claim on the necessity of vanishing quantum discord for completely-positive maps. In our final remarks we discuss the physical validity of each approach.Comment: close to published versio

    Operational Markov condition for quantum processes

    Get PDF
    We derive a necessary and sufficient condition for a quantum process to be Markovian which coincides with the classical one in the relevant limit. Our condition unifies all previously known definitions for quantum Markov processes by accounting for all potentially detectable memory effects. We then derive a family of measures of non-Markovianity with clear operational interpretations, such as the size of the memory required to simulate a process, or the experimental falsifiability of a Markovian hypothesis.Comment: 5+3 pages, 4 figures; split off from earlier version of arXiv:1512.0058

    Lazy states: sufficient and necessary condition for zero quantum entropy rates under any coupling to the environment

    Get PDF
    We find the necessary and sufficient conditions for the entropy rate of the system to be zero under any system-environment Hamiltonian interaction. We call the class of system-environment states that satisfy this condition lazy states. They are a generalization of classically correlated states defined by quantum discord, but based on projective measurements of any rank. The concept of lazy states permits the construction of a protocol for detecting global quantum correlations using only local dynamical information. We show how quantum correlations to the environment provide bounds to the entropy rate, and how to estimate dissipation rates for general non-Markovian open quantum systems.Comment: 4 page

    Positivity in the presence of initial system-environment correlation

    Get PDF
    The constraints imposed by the initial system-environment correlation can lead to nonpositive Dynamical maps. We find the conditions for positivity and complete positivity of such dynamical maps by using the concept of an assignment map. Any initial system-environment correlations make the assignment map nonpositive, while the positivity of the dynamical map depends on the interplay between the assignment map and the system-environment coupling. We show how this interplay can reveal or hide the nonpositivity of the assignment map. We discuss the role of this interplay in Markovian models.Comment: close to the published version. 5 pages, 1 figur
    corecore