21 research outputs found

    DiffHPE: Robust, Coherent 3D Human Pose Lifting with Diffusion

    Full text link
    We present an innovative approach to 3D Human Pose Estimation (3D-HPE) by integrating cutting-edge diffusion models, which have revolutionized diverse fields, but are relatively unexplored in 3D-HPE. We show that diffusion models enhance the accuracy, robustness, and coherence of human pose estimations. We introduce DiffHPE, a novel strategy for harnessing diffusion models in 3D-HPE, and demonstrate its ability to refine standard supervised 3D-HPE. We also show how diffusion models lead to more robust estimations in the face of occlusions, and improve the time-coherence and the sagittal symmetry of predictions. Using the Human\,3.6M dataset, we illustrate the effectiveness of our approach and its superiority over existing models, even under adverse situations where the occlusion patterns in training do not match those in inference. Our findings indicate that while standalone diffusion models provide commendable performance, their accuracy is even better in combination with supervised models, opening exciting new avenues for 3D-HPE research.Comment: Accepted to 2023 International Conference on Computer Vision Workshop (Analysis and Modeling of Faces and Gestures

    Structured Feature Selection of Continuous Dynamical Systems for Aircraft Dynamics Identification

    Get PDF
    This paper addresses the problem of identifying structured nonlinear dynamical systems, with the goal of using the learned dynamics in model-based reinforcement learning problems. We present in this setting a new class of scalable multi-task estimators which promote sparsity, while preserving the dynamics structure and leveraging available physical insight. An implementation leading to consistent feature selection is suggested, allowing to obtain accurate models. An additional regularizer is also proposed to help in recovering realistic hidden representations of the dynamics. We illustrate our method by applying it to an aircraft trajectory optimization problem. Our numerical results based on real flight data from 25 medium haul aircraft, totaling 8 millions observations, show that our approach is competitive with existing methods for this type of application

    CADDA: Class-wise Automatic Differentiable Data Augmentation for EEG Signals

    Get PDF
    International audienceData augmentation is a key element of deep learning pipelines, as it informs the network during training about transformations of the input data that keep the label unchanged. Manually finding adequate augmentation methods and parameters for a given pipeline is however rapidly cumbersome. In particular, while intuition can guide this decision for images, the design and choice of augmentation policies remains unclear for more complex types of data, such as neuroscience signals. Besides, class-dependent augmentation strategies have been surprisingly unexplored in the literature, although it is quite intuitive: changing the color of a car image does not change the object class to be predicted, but doing the same to the picture of an orange does. This paper investigates gradient-based automatic data augmentation algorithms amenable to class-wise policies with exponentially larger search spaces. Motivated by supervised learning applications using EEG signals for which good augmentation policies are mostly unknown, we propose a new differentiable relaxation of the problem. In the class-agnostic setting, results show that our new relaxation leads to optimal performance with faster training than competing gradient-based methods, while also outperforming gradient-free methods in the class-wise setting. This work proposes also novel differentiable augmentation operations relevant for sleep stage classification

    Deep invariant networks with differentiable augmentation layers

    No full text
    Designing learning systems which are invariant to certain data transformations is critical in machine learning. Practitioners can typically enforce a desired invariance on the trained model through the choice of a network architecture, e.g. using convolutions for translations, or using data augmentation. Yet, enforcing true invariance in the network can be difficult, and data invariances are not always known a piori. State-of-the-art methods for learning data augmentation policies require held-out data and are based on bilevel optimization problems, which are complex to solve and often computationally demanding. In this work we investigate new ways of learning invariances only from the training data. Using learnable augmentation layers built directly in the network, we demonstrate that our method is very versatile. It can incorporate any type of differentiable augmentation and be applied to a broad class of learning problems beyond computer vision. We provide empirical evidence showing that our approach is easier and faster to train than modern automatic data augmentation techniques based on bilevel optimization, while achieving comparable results. Experiments show that while the invariances transferred to a model through automatic data augmentation are limited by the model expressivity, the invariance yielded by our approach is insensitive to it by design

    Deep invariant networks with differentiable augmentation layers

    No full text
    International audienceDesigning learning systems which are invariant to certain data transformations is critical in machine learning. Practitioners can typically enforce a desired invariance on the trained model through the choice of a network architecture, e.g. using convolutions for translations, or using data augmentation. Yet, enforcing true invariance in the network can be difficult, and data invariances are not always known a piori. State-of-the-art methods for learning data augmentation policies require held-out data and are based on bilevel optimization problems, which are complex to solve and often computationally demanding. In this work we investigate new ways of learning invariances only from the training data. Using learnable augmentation layers built directly in the network, we demonstrate that our method is very versatile. It can incorporate any type of differentiable augmentation and be applied to a broad class of learning problems beyond computer vision. We provide empirical evidence showing that our approach is easier and faster to train than modern automatic data augmentation techniques based on bilevel optimization, while achieving comparable results. Experiments show that while the invariances transferred to a model through automatic data augmentation are limited by the model expressivity, the invariance yielded by our approach is insensitive to it by design

    Deep invariant networks with differentiable augmentation layers

    No full text
    Designing learning systems which are invariant to certain data transformations is critical in machine learning. Practitioners can typically enforce a desired invariance on the trained model through the choice of a network architecture, e.g. using convolutions for translations, or using data augmentation. Yet, enforcing true invariance in the network can be difficult, and data invariances are not always known a piori. State-of-the-art methods for learning data augmentation policies require held-out data and are based on bilevel optimization problems, which are complex to solve and often computationally demanding. In this work we investigate new ways of learning invariances only from the training data. Using learnable augmentation layers built directly in the network, we demonstrate that our method is very versatile. It can incorporate any type of differentiable augmentation and be applied to a broad class of learning problems beyond computer vision. We provide empirical evidence showing that our approach is easier and faster to train than modern automatic data augmentation techniques based on bilevel optimization, while achieving comparable results. Experiments show that while the invariances transferred to a model through automatic data augmentation are limited by the model expressivity, the invariance yielded by our approach is insensitive to it by design

    Gaussian Mixture Penalty for Trajectory Optimization Problems

    Get PDF
    International audienceWe consider the task of solving an aircraft trajectory optimization problem where the system dynamics have been estimated from recorded data. Additionally, we want to avoid optimized trajectories that go too far away from the domain occupied by the data, since the model validity is not guaranteed outside this region. This motivates the need for a proximity indicator between a given trajectory and a set of reference trajectories. In this presentation, we propose such an indicator based on a parametric estimator of the training set density. We then introduce it as a penalty term in the optimal control problem. Our approach is illustrated with an aircraft minimal consumption problem and recorded data from real flights. We observe in our numerical results the expected trade-off between the consumption and the penalty term

    Quantifying the Closeness to a Set of Random Curves via the Mean Marginal Likelihood

    Get PDF
    In this paper, we tackle the problem of quantifying the closeness of a newly observed curve to a given sample of random functions, supposed to have been sampled from the same distribution. We define a probabilistic criterion for such a purpose, based on the marginal density functions of an underlying random process. For practical applications, a class of estimators based on the aggregation of multivariate density estimators is introduced and proved to be consistent. We illustrate the effectiveness of our estimators, as well as the practical usefulness of the proposed criterion, by applying our method to a dataset of real aircraft trajectories

    CADDA: Class-wise Automatic Differentiable Data Augmentation for EEG Signals

    No full text
    International audienceData augmentation is a key element of deep learning pipelines, as it informs the network during training about transformations of the input data that keep the label unchanged. Manually finding adequate augmentation methods and parameters for a given pipeline is however rapidly cumbersome. In particular, while intuition can guide this decision for images, the design and choice of augmentation policies remains unclear for more complex types of data, such as neuroscience signals. Besides, class-dependent augmentation strategies have been surprisingly unexplored in the literature, although it is quite intuitive: changing the color of a car image does not change the object class to be predicted, but doing the same to the picture of an orange does. This paper investigates gradient-based automatic data augmentation algorithms amenable to class-wise policies with exponentially larger search spaces. Motivated by supervised learning applications using EEG signals for which good augmentation policies are mostly unknown, we propose a new differentiable relaxation of the problem. In the class-agnostic setting, results show that our new relaxation leads to optimal performance with faster training than competing gradient-based methods, while also outperforming gradient-free methods in the class-wise setting. This work proposes also novel differentiable augmentation operations relevant for sleep stage classification

    Data augmentation for learning predictive models on EEG: a systematic comparison

    No full text
    International audienceObjective: The use of deep learning for electroencephalography (EEG) classification tasks has been rapidly growing in the last years, yet its application has been limited by the relatively small size of EEG datasets. Data augmentation, which consists in artificially increasing the size of the dataset during training, can be employed to alleviate this problem. While a few augmentation transformations for EEG data have been proposed in the literature, their positive impact on performance is often evaluated on a single dataset and compared to one or two competing augmentation methods. This work proposes to better validate the existing data augmentation approaches through a unified and exhaustive analysis. Approach: We compare quantitatively 13 different augmentations with two different predictive tasks, datasets and models, using three different types of experiments. Main results: We demonstrate that employing the adequate data augmentations can bring up to 45% accuracy improvements in low data regimes compared to the same model trained without any augmentation. Our experiments also show that there is no single best augmentation strategy, as the good augmentations differ on each task. Significance: Our results highlight the best data augmentations to consider for sleep stage classification and motor imagery brain-computer interfaces. More broadly, it demonstrates that EEG classification tasks benefit from adequate data augmentatio
    corecore