20 research outputs found
Cybersecurity in implantable medical devices
Mención Internacional en el título de doctorImplantable Medical Devices (IMDs) are electronic devices implanted within
the body to treat a medical condition, monitor the state or improve the
functioning of some body part, or just to provide the patient with a capability
that he did not possess before [86]. Current examples of IMDs
include pacemakers and defibrillators to monitor and treat cardiac conditions;
neurostimulators for deep brain stimulation in cases such as epilepsy
or Parkinson; drug delivery systems in the form of infusion pumps; and a
variety of biosensors to acquire and process different biosignals.
Some of the newest IMDs have started to incorporate numerous communication
and networking functions—usually known as “telemetry”—,
as well as increasingly more sophisticated computing capabilities. This
has provided implants with more intelligence and patients with more autonomy,
as medical personnel can access data and reconfigure the implant
remotely (i.e., without the patient being physically present in medical facilities).
Apart from a significant cost reduction, telemetry and computing
capabilities also allow healthcare providers to constantly monitor the patient’s
condition and to develop new diagnostic techniques based on an
Intra Body Network (IBN) of medical devices [25, 26, 201].
Evolving from a mere electromechanical IMD to one with more advanced
computing and communication capabilities has many benefits but
also entails numerous security and privacy risks for the patient. The majority
of such risks are relatively well known in classical computing scenarios,
though in many respects their repercussions are far more critical in the case
of implants. Attacks against an IMD can put at risk the safety of the patient
who carries it, with fatal consequences in certain cases. Causing an intentional
malfunction of an implant can lead to death and, as recognized by the
U.S. Food and Drug Administration (FDA), such deliberate attacks could
be far more difficult to detect than accidental ones [61]. Furthermore, these
devices store and transmit very sensitive medical information that requires
protection, as dictated by European (e.g., Directive 95/46/ECC) and U.S.
(e.g., CFR 164.312) Directives [94, 204].
The wireless communication capabilities present in many modern IMDs
are a major source of security risks, particularly while the patient is in open
(i.e., non-medical) environments. To begin with, the implant becomes no
longer “invisible”, as its presence could be remotely detected [48]. Furthermore,
it facilitates the access to transmitted data by eavesdroppers who
simply listen to the (insecure) channel [83]. This could result in a major privacy breach, as IMDs store sensitive information such as vital signals,
diagnosed conditions, therapies, and a variety of personal data (e.g., birth
date, name, and other medically relevant identifiers). A vulnerable communication
channel also makes it easier to attack the implant in ways similar
to those used against more common computing devices [118, 129, 156],
i.e., by forging, altering, or replying previously captured messages [82].
This could potentially allow an adversary to monitor and modify the implant
without necessarily being close to the victim [164]. In this regard,
the concerns of former U.S. vice-president Dick Cheney constitute an excellent
example: he had his Implantable Cardioverter Defibrillator (ICD)
replaced by another without WiFi capability [219].
While there are still no known real-world incidents, several attacks on
IMDs have been successfully demonstrated in the lab [83, 133, 143]. These
attacks have shown how an adversary can disable or reprogram therapies
on an ICD with wireless connectivity, and even inducing a shock state to
the patient [65]. Other attacks deplete the battery and render the device
inoperative [91], which often implies that the patient must undergo a surgical
procedure to have the IMD replaced. Moreover, in the case of cardiac
implants, they have a switch that can be turned off merely by applying a
magnetic field [149]. The existence of this mechanism is motivated by the
need to shield ICDs to electromagnetic fields, for instance when the patient
undergoes cardiac surgery using electrocautery devices [47]. However, this
could be easily exploited by an attacker, since activating such a primitive
mechanism does not require any kind of authentication.
In order to prevent attacks, it is imperative that the new generation of
IMDs will be equipped with strong mechanisms guaranteeing basic security
properties such as confidentiality, integrity, and availability. For example,
mutual authentication between the IMD and medical personnel is
essential, as both parties must be confident that the other end is who claims
to be. In the case of the IMD, only commands coming from authenticated
parties should be considered, while medical personnel should not trust any
message claiming to come from the IMD unless sufficient guarantees are
given.
Preserving the confidentiality of the information stored in and transmitted
by the IMD is another mandatory aspect. The device must implement
appropriate security policies that restrict what entities can reconfigure the
IMD or get access to the information stored in it, ensuring that only authorized
operations are executed. Similarly, security mechanisms have to
be implemented to protect the content of messages exchanged through an insecure wireless channel.
Integrity protection is equally important to ensure that information has
not been modified in transit. For example, if the information sent by the
implant to the Programmer is altered, the doctor might make a wrong decision.
Conversely, if a command sent to the implant is forged, modified,
or simply contains errors, its execution could result in a compromise of the
patient’s physical integrity.
Technical security mechanisms should be incorporated in the design
phase and complemented with appropriate legal and administrative measures.
Current legislation is rather permissive in this regard, allowing the
use of implants like ICDs that do not incorporate any security mechanisms.
Regulatory authorities like the FDA in the U.S or the EMA (European
Medicines Agency) in Europe should promote metrics and frameworks for
assessing the security of IMDs. These assessments should be mandatory
by law, requiring an adequate security level for an implant before approving
its use. Moreover, both the security measures supported on each IMD
and the security assessment results should be made public.
Prudent engineering practices well known in the safety and security domains
should be followed in the design of IMDs. If hardware errors are
detected, it often entails a replacement of the implant, with the associated
risks linked to a surgery. One of the main sources of failure when treating
or monitoring a patient is precisely malfunctions of the device itself.
These failures are known as “recalls” or “advisories”, and it is estimated
that they affect around 2.6% of patients carrying an implant. Furthermore,
the software running on the device should strictly support the functionalities
required to perform the medical and operational tasks for what it was
designed, and no more [66, 134, 213].
In Chapter 1, we present a survey of security and privacy issues in
IMDs, discuss the most relevant mechanisms proposed to address these
challenges, and analyze their suitability, advantages, and main drawbacks.
In Chapter 2, we show how the use of highly compressed electrocardiogram
(ECG) signals (only 24 coefficients of Hadamard Transform) is enough
to unequivocally identify individuals with a high performance (classification
accuracy of 97% and with identification system errors in the order of
10−2). In Chapter 3 we introduce a new Continuous Authentication scheme
that, contrarily to previous works in this area, considers ECG signals as
continuous data streams. The proposed ECG-based CA system is intended
for real-time applications and is able to offer an accuracy up to 96%, with
an almost perfect system performance (kappa statistic > 80%). In Chapter 4, we propose a distance bounding protocol to manage access control of
IMDs: ACIMD. ACIMD combines two features namely identity verification
(authentication) and proximity verification (distance checking). The
authentication mechanism we developed conforms to the ISO/IEC 9798-2
standard and is performed using the whole ECG signal of a device holder,
which is hardly replicable by a distant attacker. We evaluate the performance
of ACIMD using ECG signals of 199 individuals over 24 hours,
considering three adversary strategies. Results show that an accuracy of
87.07% in authentication can be achieved. Finally, in Chapter 5 we extract
some conclusions and summarize the published works (i.e., scientific
journals with high impact factor and prestigious international conferences).Los Dispositivos Médicos Implantables (DMIs) son dispositivos electrónicos
implantados dentro del cuerpo para tratar una enfermedad, controlar
el estado o mejorar el funcionamiento de alguna parte del cuerpo, o simplemente
para proporcionar al paciente una capacidad que no poseía antes
[86]. Ejemplos actuales de DMI incluyen marcapasos y desfibriladores
para monitorear y tratar afecciones cardíacas; neuroestimuladores para la
estimulación cerebral profunda en casos como la epilepsia o el Parkinson;
sistemas de administración de fármacos en forma de bombas de infusión; y
una variedad de biosensores para adquirir y procesar diferentes bioseñales.
Los DMIs más modernos han comenzado a incorporar numerosas funciones
de comunicación y redes (generalmente conocidas como telemetría)
así como capacidades de computación cada vez más sofisticadas. Esto
ha propiciado implantes con mayor inteligencia y pacientes con más autonomía,
ya que el personal médico puede acceder a los datos y reconfigurar
el implante de forma remota (es decir, sin que el paciente esté
físicamente presente en las instalaciones médicas). Aparte de una importante
reducción de costos, las capacidades de telemetría y cómputo también
permiten a los profesionales de la atención médica monitorear constantemente
la condición del paciente y desarrollar nuevas técnicas de diagnóstico
basadas en una Intra Body Network (IBN) de dispositivos médicos
[25, 26, 201].
Evolucionar desde un DMI electromecánico a uno con capacidades de
cómputo y de comunicación más avanzadas tiene muchos beneficios pero
también conlleva numerosos riesgos de seguridad y privacidad para el paciente.
La mayoría de estos riesgos son relativamente bien conocidos en los
escenarios clásicos de comunicaciones entre dispositivos, aunque en muchos
aspectos sus repercusiones son mucho más críticas en el caso de los
implantes. Los ataques contra un DMI pueden poner en riesgo la seguridad
del paciente que lo porta, con consecuencias fatales en ciertos casos.
Causar un mal funcionamiento intencionado en un implante puede causar
la muerte y, tal como lo reconoce la Food and Drug Administration (FDA)
de EE.UU, tales ataques deliberados podrían ser mucho más difíciles de
detectar que los ataques accidentales [61]. Además, estos dispositivos almacenan
y transmiten información médica muy delicada que requiere se
protegida, según lo dictado por las directivas europeas (por ejemplo, la Directiva 95/46/ECC) y estadunidenses (por ejemplo, la Directiva CFR
164.312) [94, 204].
Si bien todavía no se conocen incidentes reales, se han demostrado con
éxito varios ataques contra DMIs en el laboratorio [83, 133, 143]. Estos
ataques han demostrado cómo un adversario puede desactivar o reprogramar
terapias en un marcapasos con conectividad inalámbrica e incluso
inducir un estado de shock al paciente [65]. Otros ataques agotan
la batería y dejan al dispositivo inoperativo [91], lo que a menudo implica
que el paciente deba someterse a un procedimiento quirúrgico para reemplazar
la batería del DMI. Además, en el caso de los implantes cardíacos,
tienen un interruptor cuya posición de desconexión se consigue simplemente
aplicando un campo magnético intenso [149]. La existencia de este
mecanismo está motivada por la necesidad de proteger a los DMIs frete
a posibles campos electromagnéticos, por ejemplo, cuando el paciente se
somete a una cirugía cardíaca usando dispositivos de electrocauterización
[47]. Sin embargo, esto podría ser explotado fácilmente por un atacante,
ya que la activación de dicho mecanismo primitivo no requiere ningún tipo
de autenticación.
Garantizar la confidencialidad de la información almacenada y transmitida
por el DMI es otro aspecto obligatorio. El dispositivo debe implementar
políticas de seguridad apropiadas que restrinjan qué entidades
pueden reconfigurar el DMI o acceder a la información almacenada en él,
asegurando que sólo se ejecuten las operaciones autorizadas. De la misma
manera, mecanismos de seguridad deben ser implementados para proteger
el contenido de los mensajes intercambiados a través de un canal inalámbrico
no seguro.
La protección de la integridad es igualmente importante para garantizar
que la información no se haya modificado durante el tránsito. Por ejemplo,
si la información enviada por el implante al programador se altera, el
médico podría tomar una decisión equivocada. Por el contrario, si un comando
enviado al implante se falsifica, modifica o simplemente contiene
errores, su ejecución podría comprometer la integridad física del paciente.
Los mecanismos de seguridad deberían incorporarse en la fase de diseño
y complementarse con medidas legales y administrativas apropiadas.
La legislación actual es bastante permisiva a este respecto, lo que permite
el uso de implantes como marcapasos que no incorporen ningún mecanismo
de seguridad. Las autoridades reguladoras como la FDA en los Estados
Unidos o la EMA (Agencia Europea de Medicamentos) en Europa deberían
promover métricas y marcos para evaluar la seguridad de los DMIs.
Estas evaluaciones deberían ser obligatorias por ley, requiriendo un nivel
de seguridad adecuado para un implante antes de aprobar su uso. Además,
tanto las medidas de seguridad implementadas en cada DMI como los resultados
de la evaluación de su seguridad deberían hacerse públicos.
Buenas prácticas de ingeniería en los dominios de la protección y la
seguridad deberían seguirse en el diseño de los DMIs. Si se detectan errores
de hardware, a menudo esto implica un reemplazo del implante, con
los riesgos asociados y vinculados a una cirugía. Una de las principales
fuentes de fallo al tratar o monitorear a un paciente es precisamente el
mal funcionamiento del dispositivo. Estos fallos se conocen como “retiradas”,
y se estima que afectan a aproximadamente el 2,6 % de los pacientes
que llevan un implante. Además, el software que se ejecuta en el
dispositivo debe soportar estrictamente las funcionalidades requeridas para
realizar las tareas médicas y operativas para las que fue diseñado, y no más
[66, 134, 213].
En el Capítulo 1, presentamos un estado de la cuestión sobre cuestiones
de seguridad y privacidad en DMIs, discutimos los mecanismos más relevantes
propuestos para abordar estos desafíos y analizamos su idoneidad,
ventajas y principales inconvenientes. En el Capítulo 2, mostramos
cómo el uso de señales electrocardiográficas (ECGs) altamente comprimidas
(sólo 24 coeficientes de la Transformada Hadamard) es suficiente para
identificar inequívocamente individuos con un alto rendimiento (precisión
de clasificación del 97% y errores del sistema de identificación del orden
de 10−2). En el Capítulo 3 presentamos un nuevo esquema de Autenticación
Continua (AC) que, contrariamente a los trabajos previos en esta
área, considera las señales ECG como flujos de datos continuos. El sistema
propuesto de AC basado en señales cardíacas está diseñado para aplicaciones
en tiempo real y puede ofrecer una precisión de hasta el 96%,
con un rendimiento del sistema casi perfecto (estadístico kappa > 80 %).
En el Capítulo 4, proponemos un protocolo de verificación de la distancia
para gestionar el control de acceso al DMI: ACIMD. ACIMD combina
dos características, verificación de identidad (autenticación) y verificación
de la proximidad (comprobación de la distancia). El mecanismo de autenticación
es compatible con el estándar ISO/IEC 9798-2 y se realiza utilizando
la señal ECG con todas sus ondas, lo cual es difícilmente replicable
por un atacante que se encuentre distante. Hemos evaluado el rendimiento
de ACIMD usando señales ECG de 199 individuos durante 24 horas, y
hemos considerando tres estrategias posibles para el adversario. Los resultados
muestran que se puede lograr una precisión del 87.07% en la au tenticación. Finalmente, en el Capítulo 5 extraemos algunas conclusiones
y resumimos los trabajos publicados (es decir, revistas científicas con alto
factor de impacto y conferencias internacionales prestigiosas).Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: Arturo Ribagorda Garnacho.- Secretario: Jorge Blasco Alís.- Vocal: Jesús García López de Lacall
Human identification using compressed ECG signals
As a result of the increased demand for improved life styles and the increment of senior citizens over the age of 65, new home care services are demanded. Simultaneously, the medical sector is increasingly becoming the new target of cybercriminals due the potential value of users' medical information. The use of biometrics seems an effective tool as a deterrent for many of such attacks. In this paper, we propose the use of electrocardiograms (ECGs) for the identification of individuals. For instance, for a telecare service, a user could be authenticated using the information extracted from her ECG signal. The majority of ECG-based biometrics systems extract information (fiducial features) from the characteristics points of an ECG wave. In this article, we propose the use of non-fiducial features via the Hadamard Transform (HT). We show how the use of highly compressed signals (only 24 coefficients of HT) is enough to unequivocally identify individuals with a high performance (classification accuracy of 0.97 and with identification system errors in the order of 10(-2)).This work was supported by the MINECO grant TIN2013-46469-R (SPINY: Security and Privacy in the Internet of You) and the CAM grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks)
Security and privacy issues in implantable medical devices: A comprehensive survey
Bioengineering is a field in expansion. New technologies are appearing to provide a more efficient treatment of diseases or human deficiencies. Implantable Medical Devices (IMDs) constitute one example, these being devices with more computing, decision making and communication capabilities. Several research works in the computer security field have identified serious security and privacy risks in IMDs that could compromise the implant and even the health of the patient who carries it. This article surveys the main security goals for the next generation of IMDs and analyzes the most relevant protection mechanisms proposed so far. On the one hand, the security proposals must have into consideration the inherent constraints of these small and implanted devices: energy, storage and computing power. On the other hand, proposed solutions must achieve an adequate balance between the safety of the patient and the security level offered, with the battery lifetime being another critical parameter in the design phase. (C) 2015 Elsevier Inc. All rights reserved.This work was partially supported by the MINECO Grant TIN2013-46469-R (SPINY: Security and Privacy in the Internet of You)
Design and Analysis of a True Random Number Generator Based on GSR Signals for Body Sensor Networks
This article belongs to the Section Internet of ThingsToday, medical equipment or general-purpose devices such as smart-watches or smart-textiles can acquire a person's vital signs. Regardless of the type of device and its purpose, they are all equipped with one or more sensors and often have wireless connectivity. Due to the transmission of sensitive data through the insecure radio channel and the need to ensure exclusive access to authorised entities, security mechanisms and cryptographic primitives must be incorporated onboard these devices. Random number generators are one such necessary cryptographic primitive. Motivated by this, we propose a True Random Number Generator (TRNG) that makes use of the GSR signal measured by a sensor on the body. After an exhaustive analysis of both the entropy source and the randomness of the output, we can conclude that the output generated by the proposed TRNG behaves as that produced by a random variable. Besides, and in comparison with the previous proposals, the performance offered is much higher than that of the earlier works.This work was supported by the Spanish Ministry of Economy and Competitiveness under the contract ESP-2015-68245-C4-1-P, by the MINECO grant TIN2016-79095-C2-2-R (SMOG-DEV), and by the Comunidad de Madrid (Spain) under the project CYNAMON (P2018/TCS-4566), co-financed by European Structural Funds (ESF and FEDER). This research was also supported by the Interdisciplinary Research Funds (HTC, United Arab Emirates) under the grant No. 103104
ECG-RNG: A Random Number Generator Based on ECG Signals and Suitable for Securing Wireless Sensor Networks
Wireless Sensor Networks (WSNs) are a promising technology with applications in many areas such as environment monitoring, agriculture, the military field or health-care, to name but a few. Unfortunately, the wireless connectivity of the sensors opens doors to many security threats, and therefore, cryptographic solutions must be included on-board these devices and preferably in their design phase. In this vein, Random Number Generators (RNGs) play a critical role in security solutions such as authentication protocols or key-generation algorithms. In this article is proposed an avant-garde proposal based on the cardiac signal generator we carry with us (our heart), which can be recorded with medical or even low-cost sensors with wireless connectivity. In particular, for the extraction of random bits, a multi-level decomposition has been performed by wavelet analysis. The proposal has been tested with one of the largest and most publicly available datasets of electrocardiogram signals (202 subjects and 24 h of recording time). Regarding the assessment, the proposed True Random Number Generator (TRNG) has been tested with the most demanding batteries of statistical tests (ENT, DIEHARDERand NIST), and this has been completed with a bias, distinctiveness and performance analysis. From the analysis conducted, it can be concluded that the output stream of our proposed TRNG behaves as a random variable and is suitable for securing WSNs.This work has been supported by the CAM Grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks) and by the MINECO Grant TIN2016-79095-C2-2-R (SMOG-DEV—Security mechanisms for fog computing: advanced security for devices). This research has been also supported by the Interdisciplinary Research Funds (Higher Colleges of Technology, United Arab Emirates) under Grant No. 103104
Non-invasive multi-modal human identification system combining ECG, GSR, and airflow biosignals
A huge amount of data can be collected through a wide variety of sensor technologies. Data mining techniques are often useful for the analysis of gathered data. This paper studies the use of three wearable sensors that monitor the electrocardiogram, airflow, and galvanic skin response of a subject with the purpose of designing an efficient multi-modal human identification system. The proposed system, based on the rotation forest ensemble algorithm, offers a high accuracy (99.6 % true acceptance rate and just 0.1 % false positive rate). For its evaluation, the proposed system was testing against the characteristics commonly demanded in a biometric system, including universality, uniqueness, permanence, and acceptance. Finally, a proof-of-concept implementation of the system is demonstrated on a smartphone and its performance is evaluated in terms of processing speed and power consumption. The identification of a sample is extremely efficient, taking around 200 ms and consuming just a few millijoules. It is thus feasible to use the proposed system on a regular smartphone for user identification.This work was supported by MINECO grant TIN2013- 46469-R (SPINY: Security and Privacy in the Internet of You) and CAM grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks)
A true random number generator based on gait data for the Internet of You
The Internet of Things (IoT) is more and more a reality, and every day the number of connected objects increases. The growth is practically exponential -there are currently about 8 billion and expected to reach 21 billion in 2025. The applications of these devices are very diverse and range from home automation, through traffic monitoring or pollution, to sensors to monitor our health or improve our performance. While the potential of their applications seems to be unlimited, the cyber-security of these devices and their communications is critical for a flourishing deployment. Random Number Generators (RNGs) are essential to many security tasks such as seeds for key-generation or nonces used in authentication protocols. Till now, True Random Number Generators (TRNGs) are mainly based on physical phenomena, but there is a new trend that uses signals from our body (e.g., electrocardiograms) as an entropy source. Inspired by the last wave, we propose a new TRNG based on gait data (six 3-axis gyroscopes and accelerometers sensors over the subjects). We test both the quality of the entropic source (NIST SP800-90B) and the quality of the random bits generated (ENT, DIEHARDER and NIST 800-22). From this in-depth analysis, we can conclude that: 1) the gait data is a good source of entropy for random bit generation; 2) our proposed TRNG outputs bits that behave like a random variable. All this confirms the feasibility and the excellent properties of the proposed generator.This work was supported in part by the Spanish Ministry of Economy and Competitiveness under Contract ESP2015-68245-C4-1-P, in part by the Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation under Grant P2019-CARDIOSEC, and in part bythe Comunidad de Madrid, Spain, under Project CYNAMON (P2018/TCS-4566), co-financed by the European Structural Funds (ESF andFEDER
Encryption by Heart (EbH)-Using ECG for time-invariant symmetric key generation
Wearable devices are a part of Internet-of-Things (IoT) that may offer valuable data of their porting user. This paper explores the use of ElectroCardioGram (ECG) records to encrypt user data. Previous attempts have shown that ECG can be taken as a basis for key generation. However, these approaches do not consider time-invariant keys. This feature enables using these so-created keys for symmetrically encrypting data (e.g. smartphone pictures), enabling their decryption using the key derived from the current ECG readings. This paper addresses this challenge by proposing EbH, a mechanism for persistent key generation based on ECG. EbH produces seeds from which encryption keys are generated. Experimental results over 24 h for 199 users show that EbH, under certain settings, can produce permanent seeds (thus time-invariant keys) computed on-the-fly and different for each user up to 95.97% of users produce unique keys. In addition, EbH can be tuned to produce seeds of different length (up to 300 bits) and with variable min-entropy (up to 93.51). All this supports the workability of EbH in a real setting. (C) 2017 Elsevier B.V. All rights reserved.Funding: This work was supported by the MINECO grants TIN2013-46469-R (SPINY: Security and Privacy in the Internet of You) and TIN2016-79095-C2-2-R (SMOG-DEV); by the CAM grant S2013/ICE-3095 (CIBERDINE: Cybersecurity, Data, and Risks), which is co-funded by European Funds (FEDER); and by the Programa de Ayudas para la Movilidad of Carlos III University of Madrid, Spain (J. M. de Fuentes and L. Gonzalez-Manzano grants). Data used for this research was provided by the Telemetric and ECG Warehouse (THEW) of University of Rochester, NY
Zephyrus: An information hiding mechanism leveraging Ethereum data fields
Permanent availability makes blockchain technologies a suitable alternative for building a covert channel. Previous works have analysed its feasibility in a particular blockchain technology called Bitcoin. However, Ethereum cryptocurrency is gaining momentum as a means to build distributed apps. The novelty of this paper relies on the use of Ethereum to establish a covert channel considering all transaction fields and smart contracts. No previous work has explored this issue. Thus, a mechanism called Zephyrus, an information hiding mechanism based on steganography, is developed. Moreover, its capacity, cost and stealthiness are assessed both theoretically, and empirically through a prototype implementation that is publicly released. Disregarding the time taken to send the transaction to the blockchain, its retrieval and the mining time, experimental results show that, in the best case, 40 Kbits can be embedded in 0.57 s. for US$ 1.64, and retrieved in 2.8
Alpha band disruption in the AD-continuum starts in the subjective cognitive decline stage: a MEG study
The consideration of Subjective Cognitive Decline (SCD) as a preclinical stage of AD remains still a matter of debate. Alpha band alterations represent one of the most significant changes in the electrophysiological profile of AD. In particular, AD patients exhibit reduced alpha relative power and frequency. We used alpha band activity measured with MEG to study whether SCD and MCI elders present these electrophysiological changes characteristic of AD, and to determine the evolution of the observed alterations across AD spectrum. The total sample consisted of 131 participants: 39 elders without SCD, 41 elders with SCD and 51 MCI patients. All of them underwent MEG and MRI scans and neuropsychological assessment. SCD and MCI patients exhibited a similar reduction in alpha band activity compared with the no SCD group. However, only MCI patients showed a slowing in their alpha peak frequency compared with both SCD and no SCD. These changes in alpha band were related to worse cognition. Our results suggest that AD-related alterations may start in the SCD stage, with a reduction in alpha relative power. It is later, in the MCI stage, where the slowing of the spectral profile takes place, giving rise to objective deficits in cognitive functioning.This study was supported by two projects from the Spanish Ministry of Economy and Competitiveness, PSI2009-14415-C03-01 and PSI2012-38375-C03-01, a predoctoral fellowship from the Ministry of Economy and Competitiveness to DLS (PSI2012-38375-C03-01), and three predoctoral fellowships from the Ministry of Education to RB,NS,ICRR (FPU13/06009, FPU14/07164, FPU13/02064)