768 research outputs found

    Survival probability and energy modification of hydrogen Energetic Neutral Atoms on their way from the termination shock to Earth orbit

    Full text link
    Context: With the forthcoming launch of a NASA SMEX mission IBEX devoted to imaging of heliospheric interface by in-situ detection of Energetic Neutral Atoms (ENA) an important issue becomes recognizing of transport of these atoms from the termination shock of the solar wind to Earth orbit. Aims: Investigate modifications of energy and of survival probability of the H ENA detectable by IBEX (0.01 -- 6 keV) between the termination shock and Earth orbit taking into account the influence of the variable and anisotropic solar wind and solar EUV radiation. Methods: Energy change of the atoms is calculated by numerical simulations of orbits of the H ENA atoms from ~100 AU from the Sun down to Earth orbit, taking into account solar gravity and Lyman-α\alpha radiation pressure, which is variable in time and depends on radial velocity of the atom. To calculate survival probabilities of the atoms against onization, a detailed 3D and time-dependent model of H ENA ionization based on observations of the solar wind and EUV ionizing radiation is constructed, and wth the use of this model probabilities of survival of the atoms are calculated by numerical integration along the previously calculated orbits. Results: Owing to the radiation pressure, H ENA reach the Earth orbit practically without energy and direction change except the atoms with energy lower than 0.1 keV during high solar activity. For a given energy at Earth orbit one expects fluctuations of survival probability from ~20% at 0.01 keV down to just a few percent at 6 keV and a modulation of survival probability as a function of the location at Earth orbit, ecliptic latitude of the arrival direction, and the phase of solar cycle with an amplitude of a few dozen percent for 0.1 keV atoms at solar minimum to a few percent for 6 keV atoms at solar maximum.Comment: final version, accepted by A&A, missing figure panels adde

    Neutral atom transport from the termination shock to 1 AU

    Get PDF
    Dynamics of H, D, and heavy Energetic Neutral Atoms (ENA) between the termination shock and 1 AU is discussed in the context of the forthcoming NASA SMEX mission IBEX. In particular, effects of the velocity-dependent radiation pressure on atomic trajectories are considered and ionization losses between TS and 1 AU are studied. It is shown, among others, that most of the dynamical effects and ionization losses are induced within a few AU from the Sun, which translates to the time domain into 13\sim 1 - 3 solar rotations before detection. This loosens considerably time requirements for tracking the ionization and radiation pressure history to just prior 3 months. ENA seem excellent tracers of the processes within the heliospheric interface, with the transport effects between the termination shock and detector relatively mild and easy to account for.Comment: submitted to Proceedings of the 5-th IGPP Astrophysics Conference, Honolulu HI, March 2006; 6 page

    Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere

    Full text link
    Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2-130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smaller for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50-10^6 times smaller than the hydrogen ENA intensities observed by IBEX. The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.Comment: 21 pages, 8 figures, 1 table, published in The Astrophysical Journa

    Holography for inflation using conformal perturbation theory

    Full text link
    We provide a precise and quantitative holographic description of a class of inflationary slow-roll models. The dual QFT is a deformation of a three-dimensional CFT by a nearly marginal operator, which, in the models we consider, generates an RG flow to a nearby IR fixed point. These models describe hilltop inflation, where the inflaton rolls from a local maximum of the potential in the infinite past (corresponding to the IR fixed point of the dual QFT) to reach a nearby local minimum in the infinite future (corresponding to the UV of the dual QFT). Through purely holographic means, we compute the spectra and bispectra of scalar and tensor cosmological perturbations. The QFT correlators to which these observables map holographically may be calculated using conformal perturbation theory, even when the dual QFT is strongly coupled. Both the spectra and the bispectra may be expressed this way in terms of CFT correlators that are fixed, up to a few constants, by conformal invariance. The form of slow-roll inflationary correlators is thus determined by the perturbative breaking of the de Sitter isometries away from the fixed point. Setting the constants to their values obtained by AdS/CFT at the fixed point, we find exact agreement with known expressions for the slow-roll power spectra and non-Gaussianities.Comment: 44 pp, 3 fig

    Neutral interstellar hydrogen in the inner heliosphere under the influence of wavelength-dependent solar radiation pressure

    Get PDF
    With the plethora of detailed results from heliospheric missions and at the advent of the first mission dedicated IBEX, we have entered the era of precision heliospheric studies. Interpretation of these data require precision modeling, with second-order effects quantitatively taken into account. We study the influence of the non-flat shape of the solar Ly-alpha line on the distribution of neutral interstellar H in the inner heliosphere. Based on available data, we (i) construct a model of evolution for the solar Ly-alpha line profile with solar activity, (ii) modify an existing test-particle code used to calculate the distribution of neutral interstellar H in the inner heliosphere so that it takes the dependence of radiation pressure on radial velocity into account, and (iii) compare the results of the old and new version. Discrepancies between the classical and Doppler models appear between ~5 and ~3 AU and increase towards the Sun from a few percent to a factor of 1.5 at 1 AU. The classical model overestimates the density everywhere except for a ~60-degr cone around the downwind direction, where a density deficit appears. The magnitude of the discrepancies appreciably depends on the phase of the solar cycle, but only weakly on the parameters of the gas at the termination shock. For in situ measurements of neutral atoms performed at ~1 AU, the Doppler correction will need to be taken into account, because the modifications include both the magnitude and direction of the local flux by a few km/s and degrees, respectively, which, when unaccounted for, would introduce an error of a few km/s and degrees in determination of the magnitude and direction of the bulk velocity vector at the termination shock.Comment: 10 pages, 13 figures, accepted by A&
    corecore