19 research outputs found

    Deproteinated Potato Wastewater as a Sustainable Nitrogen Source in Trichosporon domesticum Yeast Lipids Biosynthesis—a Concept of Valorization of Wastewater from Starch Industry

    Get PDF
    This study determines the ability of an isolated Trichosporon domesticum yeast strain to accumulate intracellular lipids in media with deproteinated potato wastewater (DPW) containing various carbon sources. The yeast strain was isolated from kefir and identified by internal transcribed spacer (ITS) region sequence analysis. The sequence was deposited in GenBank under accession number MH094668, and the strain was deposited in Polish Collection of Microorganisms as T. domesticum PCM 2960. DPW is an inexpensive and valuable source of nitrogen, potassium, phosphorus, and other elements in yeast cultures. DPW supplemented with glucose medium was most effective at stimulating lipid biosynthesis by T. domesticum PCM 2960 and bioreactor incubation resulted in a final lipid yield of 4.8 g L−1. The lipids of the T. domesticum PCM 2960 biomass were characterized by high contents of linoleic acid (Δ9,12C18:2), oleic acid (Δ9C18:1), palmitic acid (C16:0), and α-linolenic acid (Δ9,12,15C18:3). Theoretical calculations for biodiesel properties showed that the methylated esters of lipids from T. domesticum PCM 2960 biomass cannot be used as a biodiesel in diesel engines. Additionally, the ability to produce biofilm as one criterion for pathogenicity was tested. The ability for biofilm formation by the isolated strain was low. This study provides a promising solution for the more economical production of microbial lipids with DPW

    Recent advances on smart glycoconjugate vaccines in infections and cancer

    Get PDF
    Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as “tumor-associated carbohydrate antigens”. Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy

    Evaluation of the Efficiency of Different Disruption Methods on Yeast Cell Wall Preparation for β-Glucan Isolation

    No full text
    Selected methods for yeast cell disruption were evaluated to establish their suitability for cell wall preparation in the process of β-glucan isolation. The effect of different disruption methods on contents of total saccharides, β-glucans and proteins in the produced cell walls preparations was analyzed. The degree of cell wall purification from intracellular components was established on the basis of the ratio of solubilised material. The investigated methods included: cell exposure to hot water (autoclaving), thermally-induced autolysis, homogenization in a bead mill, sonication and their combinations. Experimental systems were prepared in water (pH 5.0 and pH 7.0) and Tris-HCl buffer (pH 8.0). The Saccharomyces cerevisiae yeast cell wall preparations with the highest degree of cytosol component release and purification of β-glucans were produced by 30 min of cell homogenization with zirconium-glass beads (0.5 mm in diameter). This was confirmed by the highest ratio of solubilised material (approx. 64%–67%). The thus-produced preparations contained ca. 60% of total saccharides, 13%–14% of β(1,3)/(1,6)-glucans, and approx. 35% of crude proteins. Similar results were obtained after autolysis coupled with bead milling as well as with sonication, but the time required for these processes was more than 24 h. Homogenization in a bead mill could be valuable for general isolation procedures because allows one to eliminate the different autolytic activity of various yeast strains

    Influence of Selenium Content in the Culture Medium on Protein Profile of Yeast Cells Candida utilis ATCC 9950

    No full text
    Selenium is an essential trace element for human health and it has been recognized as a component of several selenoproteins with crucial biological functions. It has been identified as a component of active centers of many enzymes, as well as integral part of biologically active complexes. The aim of the study was to evaluate the protein content and amino acid profile of the protein of fodder yeast Candida utilis ATCC 9950 cultured in media control and experimental enriched selenium. Protein analysis was performed using SDS-PAGE method consisting of polyacrylamide gel electrophoresis in the presence of SDS. The highest contents of soluble protein (49,5 mg/g) were found in yeast cells after 24-hour culture conducted in control (YPD) medium. In the presence of selenium there were determined small amounts of protein content. With increasing time of yeast culture (to 72 hours) the control and experimental media were reported to reduce soluble protein content. In electropherogram proteins from control cultures was observed the presence of 10 protein fractions, but in all the experimental cultures (containing 20, 30, and 40 mg/L selenium) of 14 protein fractions. On the basis of the molecular weights of proteins, it can be concluded that they were among others: selenoprotein 15 kDa and selenoprotein 18 kDa

    Influence of Selenium Content in the Culture Medium on Protein Profile of Yeast Cells Candida utilis ATCC 9950

    Get PDF
    Selenium is an essential trace element for human health and it has been recognized as a component of several selenoproteins with crucial biological functions. It has been identified as a component of active centers of many enzymes, as well as integral part of biologically active complexes. The aim of the study was to evaluate the protein content and amino acid profile of the protein of fodder yeast Candida utilis ATCC 9950 cultured in media control and experimental enriched selenium. Protein analysis was performed using SDS-PAGE method consisting of polyacrylamide gel electrophoresis in the presence of SDS. The highest contents of soluble protein (49,5 mg/g) were found in yeast cells after 24-hour culture conducted in control (YPD) medium. In the presence of selenium there were determined small amounts of protein content. With increasing time of yeast culture (to 72 hours) the control and experimental media were reported to reduce soluble protein content. In electropherogram proteins from control cultures was observed the presence of 10 protein fractions, but in all the experimental cultures (containing 20, 30, and 40 mg/L selenium) of 14 protein fractions. On the basis of the molecular weights of proteins, it can be concluded that they were among others: selenoprotein 15 kDa and selenoprotein 18 kDa

    Adsorption of Zearalenone by <i>Aureobasidium pullulans</i> Autolyzed Biomass Preparation and Its Detoxification Properties in Cultures of <i>Saccharomyces cerevisiae</i> Yeast

    No full text
    Different preventive strategies are needed to minimize the intake risks of mycotoxins, including zearalenone (ZEN). The aim of this study was to determine the ZEN adsorption ability of an autolyzed biomass preparation of polymorphic yeast Aureobasidium pullulans A.p.-3. The evaluation of the antitoxic properties of the preparation was also performed in relation to Saccharomyces cerevisiae yeast (ATCC 2366, ATCC 7090 and ATCC 9763) used as a model cell exposed to a toxic ZEN dose. The preparation at a dose of 5 mg/mL showed the adsorption of ZEN present in model systems at concentrations between 1 μg/mL to 100 μg/mL. The highest degree of adsorption was established for ZEN concentrations of 1 μg/mL and 5 μg/mL, becoming limited at higher doses of the toxin. Based on the Langmuir model of adsorption isotherms, the predicted maximum ZEN adsorption was approx. 190 µg/mL, regardless of pH. The growth of three strains of S. cerevisiae yeast cells in the medium with ZEN at concentrations within the range of 1.56 μg/mL–100 μg/mL was analyzed to determine the minimum inhibitory concentration. The growth of all tested strains was especially limited by high doses of ZEN, i.e., 50 and 100 μg/mL. The protective effect of the tested preparation was noted in relation to yeast cells exposed to toxic 100 μg/mL ZEN doses. The highest yeast cell growth (app. 36% percentage) was noted for a S. cerevisiae ATCC 9763 strain compared to the medium with ZEN but without preparation. More detailed tests determining the antitoxic mechanisms of the A. pullulans preparation are planned in the future, including cell culture bioassays and animal digestive tract models

    <i>Candida utilis</i> ATCC 9950 Cell Walls and <i>β(1,3)/(1,6)</i>-Glucan Preparations Produced Using Agro-Waste as a Mycotoxins Trap

    No full text
    Mycotoxins are harmful contaminants of food and feed worldwide. Feed additives with the abilities to trap mycotoxins are considered substances which regulate toxin transfer from feed to tissue, reducing its absorption in animal digestive tract. Market analysis emphasizes growing interest of feed producers in mycotoxins binders obtained from yeast biomass. The aim of the study was to prescreen cell walls (CW) and &#946;(1,3)/(1,6)-glucan (&#946;-G) preparations isolated from Candida utilis ATCC 9950 cultivated on waste potato juice water with glycerol as adsorbents for aflatoxin B1 (AFB1), zearalenone (ZEN), ochratoxin A (OTA), deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T-2) and fumonisin B1 (FB1). The adsorption was studied in single concentration tests at pH 3.0 and 6.0 in the presence of 1% of the adsorbent and 500 ng/mL of individual toxin. Evaluated CW and &#946;-G preparations had the potential to bind ZEN, OTA and AFB1 rather than DON, NIV, T-2 toxin and FB1. The highest percentage of adsorption (about 83%), adsorption capacity (approx. 41 &#181;g/ g preparation) and distribution coefficient (458.7mL/g) was found for zearalenone when CW preparation was used under acidic conditions. Higher protein content in CW and smaller particles sizes of the formulation could influence more efficient binding of ZEN, OTA, DON and T-2 toxin at appropriate pH compared to purified &#946;-G. Obtained results show the possibility to transform the waste potato juice water into valuable Candida utilis ATCC 9950 preparation with mycotoxins adsorption properties. Further research is important to improve the binding capacity of studied preparations by increasing the active surface of adsorption

    Evaluation of the Efficiency of Different Disruption Methods on Yeast Cell Wall Preparation for β-Glucan Isolation

    No full text
    Selected methods for yeast cell disruption were evaluated to establish their suitability for cell wall preparation in the process of β-glucan isolation. The effect of different disruption methods on contents of total saccharides, β-glucans and proteins in the produced cell walls preparations was analyzed. The degree of cell wall purification from intracellular components was established on the basis of the ratio of solubilised material. The investigated methods included: cell exposure to hot water (autoclaving), thermally-induced autolysis, homogenization in a bead mill, sonication and their combinations. Experimental systems were prepared in water (pH 5.0 and pH 7.0) and Tris-HCl buffer (pH 8.0). The Saccharomyces cerevisiae yeast cell wall preparations with the highest degree of cytosol component release and purification of β-glucans were produced by 30 min of cell homogenization with zirconium-glass beads (0.5 mm in diameter). This was confirmed by the highest ratio of solubilised material (approx. 64%–67%). The thus-produced preparations contained ca. 60% of total saccharides, 13%–14% of β(1,3)/(1,6)-glucans, and approx. 35% of crude proteins. Similar results were obtained after autolysis coupled with bead milling as well as with sonication, but the time required for these processes was more than 24 h. Homogenization in a bead mill could be valuable for general isolation procedures because allows one to eliminate the different autolytic activity of various yeast strains

    The exopolysaccharides biosynthesis by Candida yeast depends on carbon sources

    Get PDF
    Background: The exopolysaccharides (EPS) produced by yeast exhibit physico-chemical and rheological properties, which are useful in the production of food and in the cosmetic and pharmaceutical industries as well. The effect was investigated of selected carbon sources on the biosynthesis of EPS by Candida famata and Candida guilliermondii strains originally isolated from kefirs. Results: The biomass yields were dependent on carbon source (sucrose, maltose, lactose, glycerol, sorbitol) and ranged from 4.13 to 7.15 g/L. The highest biomass yield was reported for C. guilliermondii after cultivation on maltose. The maximum specific productivity of EPS during cultivation on maltose was 0.505 and 0.321 for C. guilliermondii and C. famata, respectively. The highest EPS yield was found for C. guilliermondii strain. The EPS produced under these conditions contained 65.4% and 61.5% carbohydrates, respectively. The specific growth rate (μ) of C. famata in medium containing EPS as a sole carbon source was 0.0068 h-1 and 0.0138 h-1 for C. guilliermondii strain. Conclusions: The most preferred carbon source in the synthesis of EPS for both Candida strains was maltose, wherein C. guilliermondii strain showed the higher yield of EPS biosynthesis. The carbon source affected the chemical composition of the resulting EPS and the contribution of carbohydrate in the precipitated preparation of polymers was higher during supplementation of maltose as compared to sucrose. It was also found that the EPS can be a source of carbon for the producing strains
    corecore