3,108 research outputs found

    Deep Semi-supervised Anomaly Detection with Metapath-based Context Knowledge

    Full text link
    Graph anomaly detection has attracted considerable attention in recent years. This paper introduces a novel approach that leverages metapath-based semi-supervised learning, addressing the limitations of previous methods. We present a new framework, Metapath-based Semi-supervised Anomaly Detection (MSAD), incorporating GCN layers in both the encoder and decoder to efficiently propagate context information between abnormal and normal nodes. The design of metapath-based context information and a specifically crafted anomaly community enhance the process of learning differences in structures and attributes, both globally and locally. Through a comprehensive set of experiments conducted on seven real-world networks, this paper demonstrates the superiority of the MSAD method compared to state-of-the-art techniques. The promising results of this study pave the way for future investigations, focusing on the optimization and analysis of metapath patterns to further enhance the effectiveness of anomaly detection on attributed networks

    Graph Anomaly Detection with Graph Neural Networks: Current Status and Challenges

    Full text link
    Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.Comment: 9 pages, 2 figures, 1 tables; to appear in the IEEE Access (Please cite our journal version.

    Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis

    Get PDF
    AbstractTo determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1Ā yr, 2Ā yr, and 3Ā yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng

    Biological Effect of Gas Plasma Treatment on CO 2

    Get PDF
    Porous polycaprolactone (PCL) scaffolds were fabricated by using the CO2 gas foaming/salt leaching process and then PCL scaffolds surface was treated by oxygen or nitrogen gas plasma in order to enhance the cell adhesion, spreading, and proliferation. The PCL and NaCl were mixed in the ratios of 3ā€‰:ā€‰1. The supercritical CO2 gas foaming process was carried out by solubilizing CO2 within samples at 50Ā°C and 8ā€‰MPa for 6ā€‰hr and depressurization rate was 0.4ā€‰MPa/s. The oxygen or nitrogen plasma treated porous PCL scaffolds were prepared at discharge power 100ā€‰W and 10ā€‰mTorr for 60ā€‰s. The mean pore size of porous PCL scaffolds showed 427.89ā€‰Ī¼m. The gas plasma treated porous PCL scaffolds surface showed hydrophilic property and the enhanced adhesion and proliferation of MC3T3-E1 cells comparing to untreated porous PCL scaffolds. The PCL scaffolds produced from the gas foaming/salt leaching and plasma surface treatment are suitable for potential applications in bone tissue engineering

    Fabrication of double-ceramic-layer TBCs by suspension plasma spray

    Get PDF
    Rare-earth zirconates, such as La2Zr2O7 and Gd2Zr2O7, have been investigated as one of the candidates for replacing conventional yttria-stabilized zirconia (YSZ) for thermal barrier coating (TBC) applications at higher turbine inlet temperatures. Rare-earth zirconate oxides exhibit little phase transformation upon heating up to melting temperature as well as low thermal conductivity, where as their mechanical properties is inferior to those of YSZ TBCs. Double-ceramic-layer (DCL) TBCs have been investigated in order to take advantage of beneficial characteristics of both YSZ and rare-earth zirconate. In this study, the fabrication of DCL-TBCs with YSZ layer and rare-earth-zirconate top layer by using suspension plasma spray are reported. Microstructure, compositional profile, thermal conductivity, and thermal durability of DCL-TBCs are characterized. The usefulness of these DCL-TBCs is also discussed

    Assessment in marine environment for a hypothetic nuclear accident based on the database of tidal harmonic constants

    Get PDF
    The eleven nuclear power plants in operation, under construction and a well-planned plant in the east coast of China generally use seawater for reactor cooling. In this study, an oceanic dispersion assessment system based on a database of tidal harmonic constants is developed. This system can calculate the tidal current without a large computational cost, and it is possible to calculate real-time predictions of pollu-tant dispersions in the ocean. Calculated amplitudes and phases have maximum errors of 10% and 20%with observations, respectively. A number of hypothetical simulations were performed according to vary-ing of the release starting time and duration of pollutant for the six nuclear sites in China. The developed system requires a computational time of one hour for one month of real-time forecasting in Linux OS. Thus, it can use to evaluate rapidly the dispersion characteristics of the pollutants released into the sea from a nuclear accident.European Union FP7 EURATOM project PREPARE 32328

    High glucose induces MCP-1 expression partly via tyrosine kinaseā€“AP-1 pathway in peritoneal mesothelial cells

    Get PDF
    High glucose induces MCP-1 expression partly via tyrosine kinaseā€“AP-1 pathway in peritoneal mesothelial cells.BackgroundHigh glucose in peritoneal dialysis solutions has been implicated in the pathogenesis of peritoneal fibrosis in chronic ambulatory peritoneal dialysis (CAPD) patients. However, the mechanisms are not very clear. Peritoneal macrophages seem to participate in the process of peritoneal fibrosis and monocyte chemoattractant protein-1 (MCP-1) plays a key role in the recruitment of monocytes toward the peritoneal cavity. However, little is known about the effect of high glucose on MCP-1 expression and its signal transduction pathway in human peritoneal mesothelial cells.MethodsMesothelial cells were cultured with glucose (5 to 100 mmol/L) or mannitol chronically for up to seven days. MCP-1 expression of mRNA and protein was measured by Northern blot analysis and enzyme-linked immunosorbent assay (ELISA). Chemotactic activity of high-glucoseā€“conditioned culture supernatant was measured by chemotactic assay. To examine the roles of the transcription factors activator protein-1 (AP-1) and nuclear factor-ĪŗB (NF-ĪŗB), electrophoretic mobility shift assay (EMSA) was performed.ResultsGlucose induced MCP-1 mRNA expression in a time- and dose-dependent manner. MCP-1 protein in cell culture supernant was also increased. Equivalent concentrations of mannitol had no significant effect. High-glucoseā€“conditioned supernatant possessed an increased chemotactic activity for monocytes, which was neutralized by antiā€“MCP-1 antibody. EMSA revealed that glucose increased the AP-1 binding activity in a time- and dose-dependent manner, but not NF-ĪŗB. Curcumin, an inhibitor of AP-1, dose-dependently suppressed the induction of MCP-1 mRNA by high glucose. Tyrosine kinase inhibitors such as genistein (12.5 to 50 Ī¼mol/L) and herbimycin A (0.1 to 1 Ī¼mol/L) inhibited the high-glucoseā€“induced MCP-1 mRNA expression in a dose-dependent manner, and also suppressed the high-glucoseā€“induced AP-1 binding activity.ConclusionsHigh glucose induced mesothelial MCP-1 expression partly via the tyrosine kinase-AP-1 pathway

    Cessation of Gonadotropin-Releasing Hormone Antagonist on Triggering Day: An Alternative Method for Flexible Multiple-Dose Protocol

    Get PDF
    This study was performed to analyze retrospectively outcomes of stimulated in vitro fertilization (IVF) cycles where the gonadotropin-releasing hormone (GnRH) antagonist was omitted on ovulation triggering day. A total of 92 consecutive IVF cycles were included in 65 women who are undergoing ovarian stimulation with recombinant FSH. A GnRH antagonist, cetrorelix 0.25 mg/day, was started when leading follicle reached 14 mm in diameter until the day of hCG administration (Group A, 66 cycles) or until the day before hCG administration (Group B, 26 cycles). The duration of ovarian stimulation, total dose of gonadotropins, serum estradiol levels on hCG administration day, and the number of oocytes retrieved were not significantly different between the two groups. The total dose of GnRH antagonist was significantly lower in Group B compared to Group A (2.7Ā±0.8 vs. 3.2Ā±0.9 ampoules). There was no premature luteinization in the subjects. The proportion of mature oocytes (71.4% vs. 61.7%) and fertilization rate of mature (86.3Ā±19.7% vs. 71.8Ā±31.7%) was significantly higher in Group B. There were no significant differences in embryo quality and clinical pregnancy rates. Our results suggest that cessation of the GnRH antagonist on the day of hCG administration during a flexible multiple-dose protocol could reduce the total dose of GnRH antagonist without compromising IVF results
    • ā€¦
    corecore