1,932 research outputs found

    A study on the turbulent transport of an advective nature in the fluid plasma

    Full text link
    Advective nature of the electrostatic turbulent flux of plasma energy is studied numerically in a nearly adiabatic state. Such a state is represented by the Hasegawa-Mima equation that is driven by a noise that may model the destabilization due to the phase mismatch of the plasma density and the electric potential. The noise is assumed to be Gaussian and not to be invariant under reflection along a direction s^\hat s. It is found that the flux density induced by such noise is anisotropic: While it is random along s^\hat s, it is not along the perpendicular direction s^{\hat s}_\perp and the flux is not diffusive. The renormalized response may be approximated as advective with the velocity being proportional to (kρs)2(k\rho_s)^2 in the Fourier space k\vec k

    Physical properties of transparent perovskite oxides (Ba,La)SnO3 with high electrical mobility at room temperature

    Full text link
    Transparent electronic materials are increasingly in demand for a variety of optoelectronic applications. BaSnO3 is a semiconducting oxide with a large band gap of more than 3.1 eV. Recently, we discovered that La doped BaSnO3 exhibits unusually high electrical mobility of 320 cm^2(Vs)^-1 at room temperature and superior thermal stability at high temperatures [H. J. Kim et al. Appl. Phys. Express. 5, 061102 (2012)]. Following that work, we report various physical properties of (Ba,La)SnO3 single crystals and films including temperature-dependent transport and phonon properties, optical properties and first-principles calculations. We find that almost doping-independent mobility of 200-300 cm^2(Vs)^-1 is realized in the single crystals in a broad doping range from 1.0x10^19 to 4.0x10^20 cm^-3. Moreover, the conductivity of ~10^4 ohm^-1cm^-1 reached at the latter carrier density is comparable to the highest value. We attribute the high mobility to several physical properties of (Ba,La)SnO3: a small effective mass coming from the ideal Sn-O-Sn bonding, small disorder effects due to the doping away from the SnO2 conduction channel, and reduced carrier scattering due to the high dielectric constant. The observation of a reduced mobility of ~70 cm^2(Vs)^-1 in the film is mainly attributed to additional carrier-scatterings which are presumably created by the lattice mismatch between the substrate SrTiO3 and (Ba,La)SnO3. The main optical gap of (Ba,La)SnO3 single crystals remained at about 3.33 eV and the in-gap states only slightly increased, thus maintaining optical transparency in the visible region. Based on these, we suggest that the doped BaSnO3 system holds great potential for realizing all perovskite-based, transparent high-frequency high-power functional devices as well as highly mobile two-dimensional electron gas via interface control of heterostructured films.Comment: 31 pages, 7 figure

    Symmetric negative differential resistance in a molecular nanosilver chain

    Get PDF
    The electrical transport properties of the molecular nanosilver chain have been investigated. We observed the symmetric negative differential resistance (NDR) in the current-voltage characteristics. The peak voltage (V P) increased but the peak current (I P) decreased upon cooling. The self-capacitance effect of the silver chain crystal is suggested to explain this unconventional NDR phenomenon.open0

    First report of a novel polymorphism and genetic characteristics of the leporine prion protein (PRNP) gene

    Get PDF
    Transmissible spongiform encephalopathies (TSEs) have been reported in a broad spectrum of hosts. The genetic polymorphisms and characteristics of the prion protein (PRNP) gene have a vital impact on the development of TSEs. Notably, natural TSE infection cases have never been reported in rabbits, and genetic variations of the leporine PRNP gene have not been investigated to date. To identify leporine PRNP gene polymorphism, we performed amplicon sequencing in 203 rabbits. We report a novel single nucleotide polymorphism on the leporine PRNP gene. In addition, we performed a comparative analysis of amino acid sequences of prion protein (PrP) across several hosts using ClustalW2. Furthermore, we evaluated the effect of changes of unique leporine PrP amino acids with those conserved among various species using Swiss-Pdb Viewer. Interestingly, we found seven unique leporine amino acids, and the change of unique leporine amino acids with those conserved among other species, including S175N, Q221K, Q221R, A226Y, A230G, and A230S, was predicted to reduce hydrogen bonds in leporine PrP

    Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydrogenases catalyze reversible reaction between hydrogen (H<sub>2</sub>) and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological function of [NiFe]-hydrogenase 1 is still ambiguous. We herein investigated the H<sub>2 </sub>production potential of [NiFe]-hydrogenase 1 of <it>Escherichia coli in vivo </it>and <it>in vitro</it>. The <it>hya</it>A and <it>hya</it>B genes corresponding to the small and large subunits of [NiFe]-hydrogenase 1 core enzyme, respectively, were expressed in BL21, an <it>E. coli </it>strain without H<sub>2 </sub>producing ability.</p> <p>Results</p> <p>Recombinant BL21 expressing [NiFe]-hydrogenase 1 actively produced H<sub>2 </sub>(12.5 mL H<sub>2</sub>/(h·L) in 400 mL glucose minimal medium under micro-aerobic condition, whereas the wild type BL21 did not produce H<sub>2 </sub>even when formate was added as substrate for formate hydrogenlyase (FHL) pathway. The majority of recombinant protein was produced as an insoluble form, with translocation of a small fraction to the membrane. However, the membrane fraction displayed high activity (~65% of total cell fraction), based on unit protein mass. Supplement of nickel and iron to media showed these metals contribute essentially to the function of [NiFe]-hydrogenase 1 as components of catalytic site. In addition, purified <it>E. coli </it>[NiFe]-hydrogenase 1 using his<sub>6</sub>-tag displayed oxygen-tolerant activity of ~12 nmol H<sub>2</sub>/(min·mg protein) under a normal aeration environment, compared to [FeFe]-hydrogenase, which remains inactive under this condition.</p> <p>Conclusions</p> <p>This is the first report on physiological function of <it>E. coli </it>[NiFe]-hydrogenase 1 for H<sub>2 </sub>production. We found that [NiFe]-hydrogenase 1 has H<sub>2 </sub>production ability even under the existence of oxygen. This oxygen-tolerant property is a significant advantage because it is not necessary to protect the H<sub>2 </sub>production process from oxygen. Therefore, we propose that [NiFe]-hydrogenase can be successfully applied as an efficient biohydrogen production tool under micro-aerobic conditions.</p
    corecore