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The electrical transport properties of the molecular nanosilver chain have been investigated. We observed the symmetric negative
differential resistance (NDR) in the current-voltage characteristics. The peak voltage (𝑉

𝑃
) increased but the peak current (𝐼

𝑃
)

decreased upon cooling. The self-capacitance effect of the silver chain crystal is suggested to explain this unconventional NDR
phenomenon.

1. Introduction

Negative differential resistance (NDR) has attracted much
interest due to its applications for switch, memory, and
high-speed logic devices. NDR explained by a resonance
tunneling diode has been shown in various materials, such
as germanium p-n junction [1], various heterostructures [2–
6], semiconductor superlattices [7], self-assembled layered
nanostructures [8], carbon atomic wires [9], mesoscopic
manganite structures [10], and molecular electronics device
systems [11–13].TheNDRhas also been observed in graphene
nanoribbon with unsaturated edges due to the strong current
polarization [14] and due to the interaction between the
narrow density of state of doped sites and the discrete states
in the scattering region [15]. In addition, Ag-based materials,
such as Ag/Si nanowires on silicon carbide, exhibited NDR
as well [16]. NDR phenomena in general, including those
mentioned above, exhibited asymmetric current-voltage (I-
V) characteristics with respect to the applied voltage.

Recently, Moon et al. reported a stair-shaped Ag0 coor-
dination compound without bridging ligands (nanosilver
chain) [17].This nanosilver chain (NSC) consists of Ag atoms
linked by covalent bonds and pyridine molecules. Herein,
we report the abnormal N-shaped NDR phenomenon of
the single crystalline NSC and temperature-dependent NDR
behavior that cannot be interpreted by previously reported

mechanisms. The I-V characteristics in the backward volt-
age sweep were symmetric to that in the forward voltage
sweep. Hysteretic behavior was manifested as well. The peak
voltage (𝑉

𝑃
) increased and the peak current (𝐼

𝑃
) decreased

as the temperature decreased. We suggest that the NDR
phenomenon of the NSC may be caused by a capacitance
effect of the NSC itself.

2. Materials and Methods

The I-V characteristics were measured with the conven-
tional 2-probe method. Silver paint (DuPont 4929N) and
carbon paint (Dotite XC-12) contacts were made to 0.01
inch diameter gold wires. The I-V characteristics were dou-
bly checked using semiconductor characterization systems
(Keithley 4200-SCS) and electrometer (Keithley 6517A).
The voltage sweep rate was 10mV/sec. The temperature-
dependent I-V characteristics were investigated with a cryo-
genic displex-osp.

3. Results and Discussion

The (001) and (010) planes of the single crystalline NSC are
shown in Figure 1(a).The I-V characteristics of the NSC crys-
tal at room temperature measured in air right after mounting
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Figure 1: NDR behavior at room temperature. (a) An NSC single crystal is shown in the white box. (b) I-V curve is measured in air at 300K
by the conventional 2-probemethod with DuPont, silver composition 4929N paint. 𝐼

𝑃
is a peak current.𝑉

𝑃
and𝑉

𝑉
are voltages corresponding

to the peak and the valley of the current, respectively. The number shows the voltage sweep procedure. The I-V curve with a carbon paint
contact is shown in the inset.

the sample were the same as those measured in a vacuum
after loading the sample in the displex cryogenic system.
This implies that the NSC crystal lost pyridine molecules as
soon as it was exposed to air [17] for the measurements. N-
type NDR was observed for V > 𝑉

𝑃
(0.25V) as shown in

Figure 1(b). Here, 𝑉
𝑃
and 𝑉

𝑉
are voltages corresponding to

the peak and the valley of the current, respectively. The I-V
curve was linear in the low voltage region (0 < 𝑉 < 𝑉

𝑃
). The

current abruptly dropped at𝑉
𝑃
revealing NDR and started to

increase gradually for 𝑉 > 𝑉
𝑉
(process “1”). In the backward

sweep fromhigh to low voltage, the current followed the same
curve as that in the forward sweep for 𝑉 > 𝑉

𝑉
. However, it

exhibited a big hysteresis for 0 < 𝑉 < 𝑉
𝑉
with a significantly

reduced NDR peak (process “2”). The I-V characteristics
of the negative voltage region (processes “3” and “4”) were
symmetrical with those of the positive voltage region. To
check the contact effect, the identical experiment with a
carbon paint contact was also done. The I-V characteristics
with carbon paint were the same with a silver paint contact
although the details were not identical (the inset of Figure 1).
This symmetric NDR with respect to the applied voltage has
never been reported. It will be discussed later.

The temperature-dependent I-V characteristics of the
NSC crystal from 230K to 300K are shown in Figure 2. All
I-V curves showed the symmetric NDR behavior and the
data were reproducible for 3–5 cycles of I-V measurements
at each temperature. The peak current (𝐼

𝑃
) decreased but

𝑉
𝑃
increased upon cooling. This is another unusual behavior

in NDR phenomena. The resistivity (𝜌) at each temperature
was obtained from the slope of the I-V curve in the linear
region (𝑉 < 𝑉

𝑃
) (Figure 3(a)). The resistivity at 300K is

𝜌
300K ≃ 1.5 × 10

5
Ω cm, which is in the range of resistivity

for ionic solids. The various Ag-based materials follow ionic
conduction [18–21]. Although no mobile ions are reportedly
expected to exist in the NSC crystal [17], it is possible for
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Figure 2: Temperature-dependent NDR behavior. All I-V curves
measured at various temperatures exhibit the symmetric NDR
behavior.𝑉

𝑃
increases but 𝐼

𝑃
decreases as the temperature decreases.

ionic defects to exist in the NSC crystal, and the defects
can cause the current to flow through the sample by ionic
conduction. The temperature-dependent conductivity of the
NSC crystal seems to follow the ionic conduction behavior
with the activation energy 0.35 eV. However, the resistivity
is well fitted to the thermally activated hopping conduction,
𝜌 = 𝜌

0
exp(𝐸

𝑎
/KBT), rather than the ionic conduction

as shown in the inset of Figure 3(a). 𝐸
𝑎
and 𝐾

𝐵
are the

activation energy and the Boltzmann constant, respectively.
Moreover, the ionic conduction mechanism does not explain
the unusual temperature dependence of the symmetric NDR
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Figure 3: Abnormal NDR behavior. (a) Temperature-dependent resistivity follows the thermally activated hopping conduction (inset). (b)
Contrary to NDR behavior reported previously, 𝑉

𝑃
increases but 𝐼

𝑃
decreases as the temperature decreases.

phenomena of theNSC crystal.Therefore, we suggest another
possible mechanism for the NDR behavior.

Above all, we focused on the temperature-dependent
NDR phenomena. Upon cooling, the values 𝐼

𝑃
decreased but

𝑉
𝑃
increased (Figure 3(b)). The temperature dependence of
𝐼
𝑃
and 𝑉

𝑃
was different from that of other NDR phenomena

observed in the tunneling diode, Gunn effect [22], or subband
transition from the highmobility of a fundamental level to the
low mobility of a higher subband level, where 𝐼

𝑃
increased

and 𝑉
𝑃
decreased upon cooling [9]. In case of a molecule

containing a nitroamine redox center, both the 𝐼
𝑃
and 𝑉

𝑃

increased upon cooling [11]. The 𝐼
𝑃
decrement of the NSC

crystal upon cooling is attributed to the thermally activated
hopping conduction as described in Figure 3(a). However,
the 𝑉
𝑃
increment on cooling is difficult to understand. We

suggest a possible mechanism based on thermally modulated
capacitance effect of the NSC itself.

At the beginning of voltage sweeping, the current
increases due to the bias voltage and then charges are
accumulated in the NSC gradually like a capacitor. At𝑉

𝑃
, the

charges are saturated in the NSC resulting in a drastic drop
of the current at 𝑉

𝑉
. For 𝑉 > 𝑉

𝑉
, the current exponentially

increases with the increase of the bias voltage. This is called
a thermal current [22]. During backward sweeping from 𝑉

𝑉

to 0V, the current decreases exponentially, which follows
the trace of a thermal current. In this process, hysteresis
and discharging occur. As a negative bias voltage is applied,
the same behavior is exhibited with an opposite polarity of
charge.This results in symmetric NDR behavior with respect
to the bias voltage.

In order to confirm that the charge storage is the domi-
nant factor for the NDR of the NSC, we applied a different
voltage (𝑉

𝐼
) at the beginning of sweeping (Figure 4(a)).When

𝑉
𝐼
started from the negative voltage (black line, from −1.0 V

to +1.0 V), the peak in the negative voltage region did not
appear. On the other hand, when the 𝑉

𝐼
was positive (red

line, from +1.0V to −1.0 V), the peak in the positive voltage
region was not exhibited. Nonezero 𝑉

𝐼
over 𝑉

𝑃
means that

a large number of charges are already stored in the NSC.
Therefore, NDR was not observed. This is similar to the
previous literature on ZnO nanowires [23]. In case of a
consecutive sweep from −1.0 V to + 1.0V and to −1.0 V, we
found two peaks as expected (Figure 4(b)).

The decrease of 𝑉
𝑃

with the temperature can be
understood by the thermally activated mobility, 𝜇 =
𝜇
0
exp(−Δ/𝑘

𝐵
𝑇) [24]; here, 𝜇

0
and Δ are the prefactor and

activation energy, respectively. This indicates that the mobil-
ity increases exponentially with the temperature and charges
are more easily moved. At low temperature, an additional
electrical potential, compared with high temperature, is
necessary to fully store the charge in the sample. Hence, the
𝑉
𝑃
increases as the temperature decreases.

4. Conclusions

In summary, the temperature-dependent symmetric NDR
phenomenon in theNSC crystal has been investigated. As the
temperature decreases, the 𝑉

𝑃
increases but 𝐼

𝑃
decreases. We

consider the thermally modulated capacitance effect of the
NSC as the origin of the NDR behavior.
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Figure 4: Capacitance effect of an NSC crystal. (a) A nonzero initial voltage results in the nonexistence of the peak in the voltage region,
which is the same sign to the initial voltage. Black and red lines are the voltage sweep with negative and positive initial voltages, respectively.
(b) I-V characteristics were obtained by a consecutive bias voltage sweep. The number shows the sweep procedure.
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