57 research outputs found

    Pilot KaVA monitoring on the M87 jet: confirming the inner jet structure and superluminal motions at sub-pc scales

    Full text link
    We report the initial results of our high-cadence monitoring program on the radio jet in the active galaxy M87, obtained by the KVN and VERA Array (KaVA) at 22 GHz. This is a pilot study that preceded a larger KaVA-M87 monitoring program, which is currently ongoing. The pilot monitoring was mostly performed every two to three weeks from December 2013 to June 2014, at a recording rate of 1 Gbps, obtaining the data for a total of 10 epochs. We successfully obtained a sequence of good quality radio maps that revealed the rich structure of this jet from <~1 mas to 20 mas, corresponding to physical scales (projected) of ~0.1-2 pc (or ~140-2800 Schwarzschild radii). We detected superluminal motions at these scales, together with a trend of gradual acceleration. The first evidence for such fast motions and acceleration near the jet base were obtained from recent VLBA studies at 43 GHz, and the fact that very similar kinematics are seen at a different frequency and time with a different instrument suggests these properties are fundamental characteristics of this jet. This pilot program demonstrates that KaVA is a powerful VLBI array for studying the detailed structural evolution of the M87 jet and also other relativistic jets.Comment: 10 pages, 9 figures, accepted for publication in PAS

    Precessing jet nozzle connecting to a spinning black hole in M87

    Full text link
    The nearby radio galaxy M87 offers a unique opportunity to explore the connections between the central supermassive black hole and relativistic jets. Previous studies of the inner region of M87 revealed a wide opening angle for the jet originating near the black hole. The Event Horizon Telescope resolved the central radio source and found an asymmetric ring structure consistent with expectations from General Relativity. With a baseline of 17 years of observations, there was a shift in the jet's transverse position, possibly arising from an eight to ten-year quasi-periodicity. However, the origin of this sideways shift remains unclear. Here we report an analysis of radio observations over 22 years that suggests a period of about 11 years in the position angle variation of the jet. We infer that we are seeing a spinning black hole that induces the Lense-Thirring precession of a misaligned accretion disk. Similar jet precession may commonly occur in other active galactic nuclei but has been challenging to detect owing to the small magnitude and long period of the variation.Comment: 41 pages, 7 figures, 7 table

    A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

    Get PDF
    We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT

    The Event Horizon Telescope Image of the Quasar NRAO 530

    Get PDF
    We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5−7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of ∼20 μas, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of ∼5%–8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 μas along a position angle ∼ −28°. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin
    • …
    corecore