200 research outputs found

    New findings on venous thrombogenesis

    Get PDF
    Venous thrombosis (VT) is the third most common cause of cardiovascular death worldwide. Complications from VT and pulmonary embolism are the leading cause of lost disability-adjusted life years. Risks include genetic (e.g., non-O blood group, activated protein C resistance, hyperprothrombinemia) and acquired (e.g., age, surgery, cancer, pregnancy, immobilisation, female hormone use) factors. Pathophysiologic mechanisms that promote VT are incompletely understood, but involve abnormalities in blood coagulability, vessel function, and flow (so-called Virchow’s Triad). Epidemiologic studies of humans, animal models, and biochemical and biophysical investigations have revealed contributions from extrinsic, intrinsic, and common pathways of coagulation, endothelial cells, leukocytes, red blood cells, platelets, cell-derived microvesicles, stasis-induced changes in vascular cells, and blood rheology. Knowledge of these mechanisms may yield new therapeutic targets. Characterisation of mechanisms that mediate VT formation and stability, particularly in aging, are needed to advance understanding of VT

    Newly-Recognized Roles of Factor XIII in Thrombosis

    Get PDF
    Arterial and venous thrombosis are major contributors to coagulation-associated morbidity and mortality. Greater understanding of mechanisms leading to thrombus formation and stability is expected to lead to improved treatment strategies. Factor XIII (FXIII) is a transglutaminase found in plasma and platelets. During thrombosis, activated FXIII crosslinks fibrin and promotes thrombus stability. Recent studies have provided new information about FXIII activity during coagulation and its effects on clot composition and function. These findings reveal newly-recognized roles for FXIII in thrombosis. Herein, we review published literature on FXIII biology and effects on fibrin structure and stability, epidemiologic data associating FXIII with thrombosis, and evidence from animal models indicating FXIII has an essential role in determining thrombus stability, composition, and size

    Fibrinogen and red blood cells in venous thrombosis

    Get PDF
    Deep vein thrombosis and pulmonary embolism, collectively termed venous thromboembolism (VTE), affect over 1 million Americans each year. VTE is triggered by inflammation and blood stasis leading to the formation of thrombi rich in fibrin and red blood cells (RBCs). However, little is known about mechanisms regulating fibrin and RBC incorporation into venous thrombi, or how these components mediate thrombus size or resolution. Both elevated circulating fibrinogen (hyperfibrinogenemia) and abnormal fibrin(ogen) structure and function, including increased fibrin network density and resistance to fibrinolysis, have been observed in plasmas from patients with VTE. Abnormalities in RBC number and/or function have also been associated with VTE risk. RBC contributions to VTE are thought to stem from their effects on blood viscosity and margination of platelets to the vessel wall. More recent studies suggest RBCs also express phosphatidylserine, support thrombin generation, and decrease fibrinolysis. RBC interactions with fibrin(ogen) and cells, including platelets and endothelial cells, may also promote thrombus formation. The contributions of fibrin(ogen) and RBCs to the pathophysiology of VTE warrants further investigation

    Association between plasma neutrophil gelatinase-associated lipocalin and cardiac disease hospitalizations and deaths in older women

    Get PDF
    Background Neutrophil gelatinase-associated lipocalin ( NGAL ) or lipocalin 2 may promote atherosclerosis and plaque instability leading to increased risk of cardiac events. We investigated the relationships between plasma NGAL , cardiovascular disease biomarkers, and long-term cardiac events. Methods and Results The study population consisted of 1131 ambulant older white women (mean age 75 years) without clinical coronary heart disease ( CHD ) and measures of plasma NGAL in the Perth Longitudinal Study of Ageing Women with 14.5-year CHD and heart failure hospitalizations or death (events) captured using linked records. Over 14.5 years, 256 women had CHD events, while 118 had heart failure events. Per SD increase in log-transformed NGAL there was a 35% to 37% increase in relative hazards for CHD and heart failure events in unadjusted analyses, which remained significant after adjustment for conventional risk factors for CHD events (hazard ratio 1.29, 95% CI 1.13-1.48, P0.05). Women in the highest 2 quartiles of NGAL had higher relative hazards for CHD events compared with women in the lowest quartile hazard ratio 1.61, 95% CI 1.08-2.39, P=0.019 and hazard ratio 1.97, 95% CI 1.33-3.93, P=0.001, respectively. These associations were independent of high-sensitivity cardiac troponin I, homocysteine, and estimated renal function. NGAL correctly reclassified 1 in 4 women who sustained a CHD event up in risk and 1 in 10 women without CHD events down in risk. Conclusions NGAL was associated with increased risk of long-term CHD events, independent of conventional risk factors and biomarkers. These findings provide mechanistic insight into the role of NGAL with cardiac events

    The Hamiltonian limit of (3+1)D SU(3) lattice gauge theory on anisotropic lattices

    Get PDF
    The extreme anisotropic limit of Euclidean SU(3) lattice gauge theory is examined to extract the Hamiltonian limit, using standard path integral Monte Carlo (PIMC) methods. We examine the mean plaquette and string tension and compare them to results obtained within the Hamiltonian framework of Kogut and Susskind. The results are a significant improvement upon previous Hamiltonian estimates, despite the extrapolation procedure necessary to extract observables. We conclude that the PIMC method is a reliable method of obtaining results for the Hamiltonian version of the theory. Our results also clearly demonstrate the universality between the Hamiltonian and Euclidean formulations of lattice gauge theory. It is particularly important to take into account the renormalization of both the anisotropy, and the Euclidean coupling βE \beta_E , in obtaining these results.Comment: 10 pages, 11 figure

    Effects and Detectability of Quasi-Single Field Inflation in the Large-Scale Structure and Cosmic Microwave Background

    Full text link
    Quasi-single field inflation predicts a peculiar momentum dependence in the squeezed limit of the primordial bispectrum which smoothly interpolates between the local and equilateral models. This dependence is directly related to the mass of the isocurvatons in the theory which is determined by the supersymmetry. Therefore, in the event of detection of a non-zero primordial bispectrum, additional constraints on the parameter controlling the momentum-dependence in the squeezed limit becomes an important question. We explore the effects of these non-Gaussian initial conditions on large-scale structure and the cosmic microwave background, with particular attention to the galaxy power spectrum at large scales and scale-dependence corrections to galaxy bias. We determine the simultaneous constraints on the two parameters describing the QSF bispectrum that we can expect from upcoming large-scale structure and cosmic microwave background observations. We find that for relatively large values of the non-Gaussian amplitude parameters, but still well within current uncertainties, galaxy power spectrum measurements will be able to distinguish the QSF scenario from the predictions of the local model. A CMB likelihood analysis, as well as Fisher matrix analysis, shows that there is also a range of parameter values for which Planck data may be able distinguish between QSF models and the related local and equilateral shapes. Given the different observational weightings of the CMB and LSS results, degeneracies can be significantly reduced in a joint analysis.Comment: 27 pages, 14 figure

    Whole Genome Sequence Analysis of Cryptococcus gattii from the Pacific Northwest Reveals Unexpected Diversity

    Get PDF
    A recent emergence of Cryptococcus gattii in the Pacific Northwest involves strains that fall into three primarily clonal molecular subtypes: VGIIa, VGIIb and VGIIc. Multilocus sequence typing (MLST) and variable number tandem repeat analysis appear to identify little diversity within these molecular subtypes. Given the apparent expansion of these subtypes into new geographic areas and their ability to cause disease in immunocompetent individuals, differentiation of isolates belonging to these subtypes could be very important from a public health perspective. We used whole genome sequence typing (WGST) to perform fine-scale phylogenetic analysis on 20 C. gattii isolates, 18 of which are from the VGII molecular type largely responsible for the Pacific Northwest emergence. Analysis both including and excluding (289,586 SNPs and 56,845 SNPs, respectively) molecular types VGI and VGIII isolates resulted in phylogenetic reconstructions consistent, for the most part, with MLST analysis but with far greater resolution among isolates. The WGST analysis presented here resulted in identification of over 100 SNPs among eight VGIIc isolates as well as unique genotypes for each of the VGIIa, VGIIb and VGIIc isolates. Similar levels of genetic diversity were found within each of the molecular subtype isolates, despite the fact that the VGIIb clade is thought to have emerged much earlier. The analysis presented here is the first multi-genome WGST study to focus on the C. gattii molecular subtypes involved in the Pacific Northwest emergence and describes the tools that will further our understanding of this emerging pathogen

    Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: Data linkage study of 11 million Australians

    Get PDF
    Objective To assess the cancer risk in children and adolescents following exposure to low dose ionising radiation from diagnostic computed tomography (CT) scans. Design Population based, cohort, data linkage study in Australia. Cohort members 10.9 million people identified from Australian Medicare records, aged 0-19 years on 1 January 1985 or born between 1 January 1985 and 31 December 2005; all exposures to CT scans funded by Medicare during 1985-2005 were identified for this cohort. Cancers diagnosed in cohort members up to 31 December 2007 were obtained through linkage to national cancer records. Main outcome Cancer incidence rates in individuals exposed to a CT scan more than one year before any cancer diagnosis, compared with cancer incidence rates in unexposed individuals. Results 60 674 cancers were recorded, including 3150 in 680 211 people exposed to a CT scan at least one year before any cancer diagnosis. The mean duration of follow-up after exposure was 9.5 years. Overall cancer incidence was 24% greater for exposed than for unexposed people, after accounting for age, sex, and year of birth (incidence rate ratio (IRR) 1.24 (95% confidence interval 1.20 to 1.29); P<0.001). We saw a dose-response relation, and the IRR increased by 0.16 (0.13 to 0.19) for each additional CT scan. The IRR was greater after exposure at younger ages (P<0.001 for trend). At 1-4, 5-9, 10-14, and 15 or more years since first exposure, IRRs were 1.35 (1.25 to 1.45), 1.25 (1.17 to 1.34), 1.14 (1.06 to 1.22), and 1.24 (1.14 to 1.34), respectively. The IRR increased significantly for many types of solid cancer (digestive organs, melanoma, soft tissue, female genital, urinary tract, brain, and thyroid); leukaemia, myelodysplasia, and some other lymphoid cancers. There was an excess of 608 cancers in people exposed to CT scans (147 brain, 356 other solid, 48 leukaemia or myelodysplasia, and 57 other lymphoid). The absolute excess incidence rate for all cancers combined was 9.38 per 100 000 person years at risk, as of 31 December 2007. The average effective radiation dose per scan was estimated as 4.5 mSv. Conclusions The increased incidence of cancer after CT scan exposure in this cohort was mostly due to irradiation. Because the cancer excess was still continuing at the end of follow-up, the eventual lifetime risk from CT scans cannot yet be determined. Radiation doses from contemporary CT scans are likely to be lower than those in 1985-2005, but some increase in cancer risk is still likely from current scans. Future CT scans should be limited to situations where there is a definite clinical indication, with every scan optimised to provide a diagnostic CT image at the lowest possible radiation dose
    • …
    corecore