2,341 research outputs found

    Development of high thermal conductivity polymeric materials for spacecraft use Final report, 1 Jul. 1966 - 31 May 1969

    Get PDF
    High thermal conductivity polymeric materials for spacecraft applications using phenyl compound

    Thermally conducting electron transfer polymers

    Get PDF
    New polymeric material exhibits excellent physical shock protection, high electrical resistance, and thermal conductivity. It is especially useful for electronic circuitry, such as subminiaturization of components and modular construction of circuits

    Synthesis and evaluation of polymers for use in early warning fire alarm devices

    Get PDF
    Conjugated polyacetylene polymers and one condensation polyene, all containing a high degree of conjugated unsaturation, were synthesized. These polymers were characterized by chemical analysis and by thermogravimetric analysis, as well as for their film-forming capability and gas/polymer interactions. It was found that those that had a high degree of conjugated unsaturation and had resonance - stabilizing groups were very thermally stable to 200 C, e.g., poly(dicyanoacetylene), poly(ethynylferrocene) and poly(phenylacetylene); while those with labile moieties, such as poly(p-formamidophenylacetylene), among others, suffered some degradation when heated in air. When subjected to gas/polymer interaction effects, the greatest change in electrical conductance was observed when ammonia was used as the gas and poly(p-nitrophenylacetylene) was the detector. Other polymers showed similar behavior. For example, poly(ethynylcarborane), considered to be an electron acceptor also showed a change in electrical conductance when exposed to ammonia, while poly(ethynylpyridine) and poly(ethylidenepyridazine) responded to carbon monoxide. However, for "fire gases" (gases from smoldering cotton), poly(ethynylferrocene) was the most responsive. Thus, the concept of polymers with different electronegativities forming charge-transfer complexes with different gases was found to be operable

    Improved thermally conducting electron transfer polymers

    Get PDF
    Development of polymers with improved heat transfer coefficients for use in encapsulating electronic modules is discussed. Chemical reactions for synthesizing the polymers are described and thermodynamic and physical properties are analyzed

    Semiconducting polymers for gas detection

    Get PDF
    Conjugated polyenes, and polyesters containing phthalocyanine in their backbone, were synthesized. These polymers were characterized by chemical analysis, thermogravimetric analysis, spectral analysis, and X-ray diffraction studies for crystallinity, as well as for their film-forming capability and gas/polymer interactions. Most of the polymers were relatively insensitive to water vapor up to 50 percent relative humidity, but the polyester/phthalocyanine (iron) polymer was relatively insensitive up to 100 percent RH. On the other hand, poly(p-dimethylaminophenylacetylene) was too conductive at 100 percent RH. Of the gases tested, the only ones that gave any evidence of interacting with the polymers were SO2, NOx, HCN and NH3. Poly(imidazole)/thiophene responded to each of these gases at all relative humidities, while the other polymers gave varying response, depending upon the RH. Thus, since most of these gases were electron-accepting, the electron-donating character of poly(imidazole)/thiophene substantiates the concept of electronegativity being the operating principle for interaction effects. Of the six polymers prepared, poly(imidazole)/thiophene first showed a very good response to smoldering cotton, but it later became nonresponsive; presumably due to oxidation effects

    Space cabin atmosphere contaminant detection techniques

    Get PDF
    Semiconducting polymer film preparation and use in contaminant detector for space cabin atmospher

    Bistable light detectors with nonlinear waveguide arrays

    Full text link
    Bistability induced by nonlinear Kerr effect in arrays of coupled waveguides is studied and shown to be a means to conceive light detectors that switch under excitation by a weak signal. The detector is obtained by coupling two single 1D waveguide to an array of coupled waveguides with adjusted indices and coupling. The process is understood by analytical description in the conservative and continuous case and illustrated by numerical simulations of the model with attenuation.Comment: Phys. Rev. Lett., v.94, (2005, to be published

    Another Leigh-Strassler deformation through the Matrix model

    Get PDF
    In here the matrix model approach, by Dijkgraaf and Vafa, is used in order to obtain the effective superpotential for a certain deformation of N=4 SYM discovered by Leigh and Strassler. An exact solution to the matrix model Lagrangian is found and is expressed in terms of elliptic functions.Comment: 15 pages,2 figure

    A Parametrization of Bipartite Systems Based on SU(4) Euler Angles

    Get PDF
    In this paper we give an explicit parametrization for all two qubit density matrices. This is important for calculations involving entanglement and many other types of quantum information processing. To accomplish this we present a generalized Euler angle parametrization for SU(4) and all possible two qubit density matrices. The important group-theoretical properties of such a description are then manifest. We thus obtain the correct Haar (Hurwitz) measure and volume element for SU(4) which follows from this parametrization. In addition, we study the role of this parametrization in the Peres-Horodecki criteria for separability and its corresponding usefulness in calculating entangled two qubit states as represented through the parametrization.Comment: 23 pages, no figures; changed title and abstract and rewrote certain areas in line with referee comments. To be published in J. Phys. A: Math. and Ge
    • …
    corecore