9 research outputs found

    Exploring the Potential of Sr<sup>2+</sup> for Improving the Post-Hardening Strength and Durability Characteristics of Cement Paste Composites

    No full text
    This study investigates the effects of strontium ions on enhancing the post-hardening strength and durability characteristics of hydrated cement composites, exploring their potential use as a rehabilitation method for aging concrete structures. A 30% strontium nitrate solution served as the source of strontium ions. Cement paste specimens with a water-to-cement ratio of 0.5, cured for 28 days, were submerged in the 30% strontium nitrate solution to facilitate strontium ion penetration. Compressive and flexural strength tests were conducted on the specimens and compared to those cured in deionized water. Moreover, the durability performance, including surface abrasion resistance, water sorptivity, and porosity, was examined. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffractometry (XRD) analyses were also carried out to investigate the microscopic morphology and chemical characteristics of the specimens. Results indicated that the strontium-treated specimens exhibited notable enhancements in both compressive and flexural strengths, especially in flexural strength. The specimens also demonstrated improved surface abrasion resistance, decreased water absorption, and a marked reduction in porosity. SEM analysis revealed a densified microstructure in the strontium-treated cement paste specimens, and EDS and XRD analyses showed changes in their morphology and chemical compositions and structures, indicating the formation of new types of hydrates. Accordingly, this study suggests that the strontium ion treatment method has significant potential for the maintenance and restoration of aging cementitious materials

    Evaluating Pavement Lane Markings in Metropolitan Road Networks with a Vehicle-Mounted Retroreflectometer and AI-Based Image Processing Techniques

    No full text
    The objectives of this study were to evaluate pavement lane markings in a metropolitan road network and to develop a maintenance strategy for safe daytime and night-time driving. To achieve this, data on the retroreflectivity and physical defect ratio of lane markings were collected remotely using a vehicle-mounted retroreflectometer and high-resolution camera. The retroreflectivity was measured and analyzed by road type (city freeways, arterial roads, and collector roads) and by lane color (yellow, white, and blue) over a total length of 6790.34 km. The results indicate that the retroreflective performance deteriorates the most in the case of white lanes, regardless of the road classification, especially in the case of the first white lane. Additionally, the physical defects of lane markings were investigated over a total length of 502.82 km and categorized by road classification and lane color. Mask R-CNN and the Otsu Threshold method were used to automatically calculate the ratios of the defects. The results indicate that city freeways show a lower defect ratio than arterial and collector roads for all colors. Moreover, there is no significant difference between the white lanes for all types of roads. The distribution trends and relationship between retroreflectivity and the defect ratios were discussed according to the road type and lane color, and a method for selecting maintenance priority was suggested. The results show that the number of lanes requiring the restoration of retroreflectivity increases as the defect ratio increases. Therefore, we suggest prioritizing maintenance work on the lanes with a higher ratio of defects, covering a higher proportion of low-retroreflectivity sections. In addition, the unit length for data averaging can be adjusted to improve the work efficiency

    Molecular Dynamics Simulation of Calcium-Silicate-Hydrate for Nano-Engineered Cement Composites—A Review

    No full text
    With the continuous research efforts, sophisticated predictive molecular dynamics (MD) models for C-S-H have been developed, and the application of MD simulation has been expanded from fundamental understanding of C-S-H to nano-engineered cement composites. This paper comprehensively reviewed the current state of MD simulation on calcium-silicate-hydrate (C-S-H) and its diverse applications to nano-engineered cement composites, including carbon-based nanomaterials (i.e., carbon nanotube, graphene, graphene oxide), reinforced cement, cement&ndash;polymer nanocomposites (with an application on 3D printing concrete), and chemical additives for improving environmental resistance. In conclusion, the MD method could not only compute but also visualize the nanoscale behaviors of cement hydrates and other ingredients in the cement matrix; thus, fundamental properties of C-S-H structure and its interaction with nanoparticles can be well understood. As a result, the MD enabled us to identify and evaluate the performance of new advanced nano-engineered cement composites

    Rheological and Flexural Strength Characteristics of Cement Mixtures through the Synergistic Effects of Graphene Oxide and PVA Fibers

    No full text
    This study investigates the synergistic effects of incorporating graphene oxide (GO) and polyvinyl alcohol (PVA) fibers into cement paste mixtures, aiming to modify their rheological properties and flexural behaviors with resistance to crack formation. The relationship between static yield stress and critical shear strain was examined in ten cement paste mixtures with varying concentrations of 6 mm and 12 mm PVA fibers and 0.05% GO. Additionally, viscosity analyses were performed. For the specimens fabricated from these mixtures, flexural strength tests were conducted using the Digital Image Correlation (DIC) technique for precise strain analysis under load history. The results indicated a significant increase in static yield stress, viscosity, and critical shear strain due to the combined addition of GO and PVA fibers, more so than when added individually. Notably, in PVA fiber-reinforced cement mixtures, the integration of GO increased the crack initiation load by up to 23% and enhanced pre-crack strain by 30 to 50%, demonstrating a notable delay in crack initiation and a reduction in crack propagation. Microstructural analyses using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) revealed a concentrated presence of GO around and on the PVA fibers. This promotes increased C-S-H gel formation, resulting in a denser microstructure. Additionally, GO effectively interacts with PVA fibers, enhancing the adherence of hydration products at their interface

    Experimental Study On The Waterstop With Adhesive Bonding

    No full text
    In this study, experimental investigation was carried out on the waterproofing performance of waterstop with and without adhesive bonding between concrete and waterstop. During underground structure construction, waterstop is typically used to prevent the water percolating through the joints where consecutive concrete casting is infeasible. For example, waterstop is often adopted at the joint between two panels of diaphragm walls. Conventional waterstop, however, often fails to prevent water percolation as the waterstop does not fully bond to the concrete, often making water passage through the gap between waterstop and concrete. Artificial adhesive bonding between the waterstop and the concrete was, therefore, applied to improve bonding and reduce water percolation. High water pressure was applied to the two waterstop waterproofing systems, one with adhesive and another without adhesive, and comparison was made between the two systems

    Mechanical and Sorptivity Characteristics of Edge-Oxidized Graphene Oxide (EOGO)-Cement Composites: Dry- and Wet-Mix Design Methods

    No full text
    This paper aims to investigate the effects of edge-oxidized graphene oxide nanoflakes (EOGO) on the mechanical properties and sorptivity of cement composites. The EOGO used in this study was produced by a mechanochemical process that assists the production of EOGO in large quantities at significantly reduced costs, enabling its practical use for infrastructure construction. The scope of this work includes the use of EOGO as an additive in cement composites, including cement paste and mortar. This study explores two mixing methods: The dry-mix method and the wet-mix method. The dry-mix method uses EOGO as dry powder in cement composites whereas the wet-mix method uses a water-dispersed solution (using a sonication process). Varied percentages of EOGO, ranging from 0.01% to 1.0%, were used for both methods. To evaluate the concrete durability, the effect of EOGO addition on sorptivity of the cement composites was investigated by performing total porosity and water sorptivity tests. It was found that 0.05% of EOGO is the optimum proportion to exert the highest strength in compressive and flexural strength tests. In addition, the dry-mix method is comparable to the wet-mix method (with dispersion of EOGO), thus more practical for field engineering applications

    Technical report (Texas Transportation Institute)

    No full text
    Report regarding research into cheaper alternatives for the construction of pavement subbases that maintains adequate pavement performance
    corecore