112 research outputs found

    Network Formation with Local Complements and Global Substitutes: The Case of R&D Networks

    Full text link

    TTF-1 Action on the Transcriptional Regulation of Cyclooxygenase-2 Gene in the Rat Brain

    Get PDF
    We have recently found that thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is postnatally expressed in discrete areas of the hypothalamus and closely involved in neuroendocrine functions. We now report that transcription of cyclooxygenase-2 (COX-2), the rate limiting enzyme in prostaglandin biosynthesis, was inhibited by TTF-1. Double immunohistochemistry demonstrated that TTF-1 was expressed in the astrocytes and endothelial cells of blood vessel in the hypothalamus. Promoter assays and electrophoretic mobility shift assays showed that TTF-1 inhibited COX-2 transcription by binding to specific binding domains in the COX-2 promoter. Furthermore, blocking TTF-1 synthesis by intracerebroventricular injection of an antisense oligomer induced an increase of COX-2 synthesis in non-neuronal cells of the rat hypothalamus, and resulted in animals' hyperthermia. These results suggest that TTF-1 is physiologically involved in the control of thermogenesis by regulating COX-2 transcription in the brain

    Kinetics of Microbial Reduction of Solid Phase U(VI)

    Get PDF
    Sodium boltwoodite (NaUO2SiO3OH•1.5 H2O) was used to assess the kinetics of microbial reduction of solid-phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads in a nongrowth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid-phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solidphase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Naboltwoodite, intragrain uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated that microbial reduction of solid-phase U(VI) is controlled by coupled biological, chemical, and physical processes

    Reduction of pertechnetate [Tc(VII)] by aqueous Fe(II) and the nature of solid phase redox products

    Get PDF
    The subsurface behaviour of 99Tc, a contaminant resulting from nuclear fuels reprocessing, is dependent on its valence (e.g., IV or VII). Abiotic reduction of soluble Tc(VII) by Fe(II)(aq) in pH 6–8 solutions was investigated under strictly anoxic conditions using an oxygen trap (\u3c7.5 · 10-9 atm O2). The reduction kinetics were strongly pH dependent. Complete and rapid reduction of Tc(VII) to a precipitated Fe/Tc(IV) form was observed when 11 µmol/L of Tc(VII) was reacted with 0.4 mmol/L Fe(II) at pH 7.0 and 8.0, while no significant reduction was observed over 1 month at pH 6.0. Experiments conducted at pH 7.0 with Fe(II)(aq) = 0.05–0.8 mmol/L further revealed that Tc(VII) reduction was a combination of homogeneous and heterogeneous reaction. Heterogeneous reduction predominated after approximately 0.01 mmol/L of Fe(II) was oxidized. The heterogeneous reaction was more rapid, and was catalyzed by Fe(II) that adsorbed to the Fe/Tc(IV) redox product. Wet chemical and Fe–X-ray absorption near edge spectroscopy measurements (XANES) showed that Fe(II) and Fe(III) were present in the Fe/Tc(IV) redox products after reaction termination. 57Fe-Mössbauer, extended X-ray adsorption fine structure (EXAFS), and transmission electron microscopy (TEM) measurements revealed that the Fe/Tc(IV) solid phase was poorly ordered and dominated by Fe(II)-containing ferrihydrite with minor magnetite. Tc(IV) exhibited homogeneous spatial distribution within the precipitates. According to Tc-EXAFS measurements and structural modeling, its molecular environment was consistent with an octahedral Tc(IV) dimer bound in bidentate edge-sharing mode to octahedral Fe(III) associated with surface or vacancy sites in ferrihydrite. The precipitate maintained Tc(IV)aq concentrations that were slightly below those in equilibrium with amorphous Tc(IV)O2•nH2O(s). The oxidation rate of sorbed Tc(IV) in the Fe/Tc precipitate was considerably slower than Tc(IV)O2•nH2O(s) as a result of its intraparticle/intragrain residence. Precipitates of this nature may form in anoxic sediments or ground waters, and the intraparticle residence of sorbed/precipitated Tc(IV) may limit 99Tc remobilization upon the return of oxidizing conditions

    Modified 7-Chloro-11<i>H</i>-indeno[1,2-b]quinoxaline Heterocyclic System for Biological Activities

    No full text
    Recent advances in functionalized organic Spiro heterocyclic compounds composed of nitrogen bonded five- and six-membered rings have been made, establishing them as a synthetic target in organic-based biomedical applications. In this work, we report a synthesis of spirocyclic compounds under a one-pot reaction using 1,3-dipolar cycloaddition in a regio and diastereoselective manner. The higher atomic economy with higher yield (95%) and regio and stereoselectivity were achieved by a multi-component reaction of L-proline (1), Indenoquinoxaline (2), and the dipolarophile of malononitrile (3) solvents followed by reflux conditions. The reaction intermediate comprised azomethineylides derived from reactive primary amines, and the spiro derivatives were synthesized up to a ≈ 95% yield. The structural and characteristic chemical components of the as-prepared Spiro compounds were characterized by 1H-NMR, FTIR, and Mass spectroscopy. The functionalized spiro-pyrrolizidines were found to be effective for biological uses by considering their in vitro screening and antimicrobial impacts. Spiro constituents were found to be much more effective for Gram-positive bacteria due to the stronger lipophilic character of the molecules, and they resulted feasible membrane permeation in a biological system. Based on the planarity geometry of the Spiro pyrrolizidines, meta-substitution possesses steric hindrance and hence shows less effectiveness compared to para-substitution on the same nucleus, which shows a marginal steric effect. The biological studies showed that the derived spiro heterocyclic systems have an inhibitory effect of 50%

    Modified 7-Chloro-11H-indeno[1,2-b]quinoxaline Heterocyclic System for Biological Activities

    No full text
    Recent advances in functionalized organic Spiro heterocyclic compounds composed of nitrogen bonded five- and six-membered rings have been made, establishing them as a synthetic target in organic-based biomedical applications. In this work, we report a synthesis of spirocyclic compounds under a one-pot reaction using 1,3-dipolar cycloaddition in a regio and diastereoselective manner. The higher atomic economy with higher yield (95%) and regio and stereoselectivity were achieved by a multi-component reaction of L-proline (1), Indenoquinoxaline (2), and the dipolarophile of malononitrile (3) solvents followed by reflux conditions. The reaction intermediate comprised azomethineylides derived from reactive primary amines, and the spiro derivatives were synthesized up to a &asymp; 95% yield. The structural and characteristic chemical components of the as-prepared Spiro compounds were characterized by 1H-NMR, FTIR, and Mass spectroscopy. The functionalized spiro-pyrrolizidines were found to be effective for biological uses by considering their in vitro screening and antimicrobial impacts. Spiro constituents were found to be much more effective for Gram-positive bacteria due to the stronger lipophilic character of the molecules, and they resulted feasible membrane permeation in a biological system. Based on the planarity geometry of the Spiro pyrrolizidines, meta-substitution possesses steric hindrance and hence shows less effectiveness compared to para-substitution on the same nucleus, which shows a marginal steric effect. The biological studies showed that the derived spiro heterocyclic systems have an inhibitory effect of 50%
    • …
    corecore