3,379 research outputs found

    Directing transport by polarized radiation in presence of chaos and dissipation

    Full text link
    We study numerically the dynamics of particles on the Galton board of semi-disk scatters in presence of monochromatic radiation and dissipation. It is shown that under certain conditions the radiation leads to appearance of directed transport linked to an underlining strange attractor. The direction of transport can be efficiently changed by radiation polarization. The experimental realization of this effect in asymmetric antidot superlattices is discussed.Comment: revtex, 4 pages, 6 fig

    Giant Magnetoresistance Oscillations Induced by Microwave Radiation and a Zero-Resistance State in a 2D Electron System with a Moderate Mobility

    Full text link
    The effect of a microwave field in the frequency range from 54 to 140 GHz\mathrm{GHz} on the magnetotransport in a GaAs quantum well with AlAs/GaAs superlattice barriers and with an electron mobility no higher than 10610^6 cm2/Vs\mathrm{cm^2/Vs} is investigated. In the given two-dimensional system under the effect of microwave radiation, giant resistance oscillations are observed with their positions in magnetic field being determined by the ratio of the radiation frequency to the cyclotron frequency. Earlier, such oscillations had only been observed in GaAs/AlGaAs heterostructures with much higher mobilities. When the samples under study are irradiated with a 140-GHz\mathrm{GHz} microwave field, the resistance corresponding to the main oscillation minimum, which occurs near the cyclotron resonance, appears to be close to zero. The results of the study suggest that a mobility value lower than 10610^6 cm2/Vs\mathrm{cm^2/Vs} does not prevent the formation of zero-resistance states in magnetic field in a two-dimensional system under the effect of microwave radiation.Comment: 4 pages, 2 figur

    Anisotropic positive magnetoresistance of a nonplanar 2D electron gas in a parallel magnetic field

    Full text link
    We study the transport properties of a 2D electron gas in narrow GaAs quantum wells with AlAs/GaAs superlattice barriers. It is shown that the anisotropic positive magnetoresistance observed in selectively doped semiconductor structures in a parallel magnetic field is caused by the spatial modulation of the 2D electron gas.Comment: 4 pages, 3 figure

    Numerical methods for calculating poles of the scattering matrix with applications in grating theory

    Full text link
    Waveguide and resonant properties of diffractive structures are often explained through the complex poles of their scattering matrices. Numerical methods for calculating poles of the scattering matrix with applications in grating theory are discussed. A new iterative method for computing the matrix poles is proposed. The method takes account of the scattering matrix form in the pole vicinity and relies upon solving matrix equations with use of matrix decompositions. Using the same mathematical approach, we also describe a Cauchy-integral-based method that allows all the poles in a specified domain to be calculated. Calculation of the modes of a metal-dielectric diffraction grating shows that the iterative method proposed has the high rate of convergence and is numerically stable for large-dimension scattering matrices. An important advantage of the proposed method is that it usually converges to the nearest pole.Comment: 9 pages, 2 figures, 4 table

    Nonequilibrium stationary states with ratchet effect

    Full text link
    An ensemble of particles in thermal equilibrium at temperature TT, modeled by Nos\`e-Hoover dynamics, moves on a triangular lattice of oriented semi-disk elastic scatterers. Despite the scatterer asymmetry a directed transport is clearly ruled out by the second law of thermodynamics. Introduction of a polarized zero mean monochromatic field creates a directed stationary flow with nontrivial dependence on temperature and field parameters. We give a theoretical estimate of directed current induced by a microwave field in an antidot superlattice in semiconductor heterostructures.Comment: 4 pages, 5 figures (small changes added
    • …
    corecore