3,281 research outputs found
Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective
This Report has a number of inter-related general purposes. One is to explore the extent to which food, nutrition, physical activity, and body composition modify the risk of cancer, and to specify which factors are most important. To the extent that environmental factors such as food, nutrition, and physical activity influence the risk of cancer, it is a preventable disease. The Report specifies recommendations based on solid evidence which, when followed, will be expected to reduce the incidence of cancer
Water use and water availability constraints to decarbonised electricity systems
Analysis of numerous low carbon electricity strategies have been shown to have very divergent water requirements, normally needed for cooling of thermoelectric power stations.
Our regional river-basin scale analysis of water use for future UK electricity strategies shows that, whilst in the majority of cases freshwater use is expected to decline, pathways with high levels of carbon capture and storage (CCS) will result in significantly elevated and concentrated water demands in a few key river basins. Furthermore, these growing demands are compared to both current water availability, and our expected regional water availability under the impacts of climate change. We identify key freshwater constraints to electricity strategies with high levels of CCS and show how these risks may be mitigated with higher levels of hybrid cooling and alternative cooling water sources
Local Electronic Structure of a Single Magnetic Impurity in a Superconductor
The electronic structure near a single classical magnetic impurity in a
superconductor is determined using a fully self-consistent Koster-Slater
algorithm. Localized excited states are found within the energy gap which are
half electron and half hole. Within a jellium model we find the new result that
the spatial structure of the positive-frequency (electron-like) spectral weight
(or local density of states), can differ strongly from that of the negative
frequency (hole-like) spectral weight. The effect of the impurity on the
continuum states above the energy gap is calculated with good spectral
resolution for the first time. This is also the first three-dimensional
self-consistent calculation for a strong magnetic impurity potential.Comment: 13 pages, RevTex, change in heuristic picture, no change in numerical
result
Extended Impurity Potential in a d_{x^2-y^2} Superconductor
We investigate the role of a finite potential range of a nonmagnetic impurity
for the local density of states in a d_{x^2-y^2} superconductor. Impurity
induced subgap resonances are modified by the appearance of further scattering
channels beyond the --wave scattering limit. The structure of the local
density of states (DOS) in the vicinity of the impurity is significantly
enhanced and therefore improves the possibility for observing the
characteristic anisotropic spatial modulation of the local DOS in a d_{x^2-y^2}
superconductor by scanning tunneling microscopy.Comment: 4 pages, Revtex, with 4 embedded eps figures. Submitted to Phys. Rev.
Let
Anomalous Behavior near T_c and Synchronization of Andreev Reflection in Two-Dimensional Arrays of SNS Junctions
We have investigated low-temperature transport properties of two-dimensional
arrays of superconductor--normal-metal--superconductor (SNS) junctions. It has
been found that in two-dimensional arrays of SNS junctions (i) a change in the
energy spectrum within an interval of the order of the Thouless energy is
observed even when the thermal broadening far exceeds the Thouless energy for a
single SNS junction; (ii) the manifestation of the subharmonic energy gap
structure (SGS) with high harmonic numbers is possible even if the energy
relaxation length is smaller than that required for the realization of a
multiple Andreev reflection in a single SNS junction. These results point to
the synchronization of a great number of SNS junctions. A mechanism of the SGS
origin in two-dimensional arrays of SNS junctions, involving the processes of
conventional and crossed Andreev reflection, is proposed.Comment: 5 pages, 5 figure
Inelastic diffraction and color-singlet gluon-clusters in high-energy hadron-hadron and lepton-hadron collisions
It is proposed, that ``the colorless objects'' which manifest themselves in
large-rapidity-gap events are color-singlet gluon-clusters due to
self-organized criticality (SOC), and that optical-geometrical concepts and
methods are useful in examing the space-time properties of such objects. A
simple analytical expression for the -dependence of the inelastic single
diffractive cross section ( is the four-momentum transfer
squared) is derived. Comparison with the existing data and predictions for
future experiments are presented. The main differences and similarities between
the SOC-approach and the ``Partons in the Pomeron (Pomeron and
Reggeon)''-approach are discussed.Comment: 12 pages, 2 figure
Non-magnetic impurities in two dimensional superconductors
A numerical approach to disordered 2D superconductors described by BCS mean
field theory is outlined. The energy gap and the superfluid density at zero
temperature and the quasiparticle density of states are studied. The method
involves approximate self-consistent solutions of the Bogolubov-deGennes
equations on finite square lattices. Where comparison is possible, the results
of standard analytic approaches to this problem are reproduced. Detailed
modeling of impurity effects is practical using this approach. The {\it range}
of the impurity potential is shown to be of {\it quantitative importance} in
the case of strong potential scatterers. We discuss the implications for
experiments, such as the rapid suppression of superconductivity by Zn doping in
Copper-Oxide superconductors.Comment: 16 pages, latex, 8 figures( available upon request
- β¦