186 research outputs found

    Mobile Service Clouds: A self-managing infrastructure for autonomic mobile computing services

    Get PDF
    Abstract. We recently introduced Service Clouds, a distributed infrastructure designed to facilitate rapid prototyping and deployment of autonomic communication services. In this paper, we propose a model that extends Service Clouds to the wireless edge of the Internet. This model, called Mobile Service Clouds, enables dynamic instantiation, composition, configuration, and reconfiguration of services on an overlay network to support mobile computing. We have implemented a prototype of this model and applied it to the problem of dynamically instantiating and migrating proxy services for mobile hosts. We conducted a case study involving data streaming across a combination of PlanetLab nodes, local proxies, and wireless hosts. Results are presented demonstrating the effectiveness of the prototype in establishing new proxies and migrating their functionality in response to node failures.

    A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade

    Full text link
    We provide a framework for analyzing the problem of interacting electrons in a ballistic quantum dot with chaotic boundary conditions within an energy ETE_T (the Thouless energy) of the Fermi energy. Within this window we show that the interactions can be characterized by Landau Fermi liquid parameters. When gg, the dimensionless conductance of the dot, is large, we find that the disordered interacting problem can be solved in a saddle-point approximation which becomes exact as g→∞g\to\infty (as in a large-N theory). The infinite gg theory shows a transition to a strong-coupling phase characterized by the same order parameter as in the Pomeranchuk transition in clean systems (a spontaneous interaction-induced Fermi surface distortion), but smeared and pinned by disorder. At finite gg, the two phases and critical point evolve into three regimes in the um−1/gu_m-1/g plane -- weak- and strong-coupling regimes separated by crossover lines from a quantum-critical regime controlled by the quantum critical point. In the strong-coupling and quantum-critical regions, the quasiparticle acquires a width of the same order as the level spacing Δ\Delta within a few Δ\Delta's of the Fermi energy due to coupling to collective excitations. In the strong coupling regime if mm is odd, the dot will (if isolated) cross over from the orthogonal to unitary ensemble for an exponentially small external flux, or will (if strongly coupled to leads) break time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we are treating charge-channel instabilities in spinful systems, leaving spin-channel instabilities for future work. No substantive results are change

    A Pearson-Dirichlet random walk

    Full text link
    A constrained diffusive random walk of n steps and a random flight in Rd, which can be expressed in the same terms, were investigated independently in recent papers. The n steps of the walk are identically and independently distributed random vectors of exponential length and uniform orientation. Conditioned on the sum of their lengths being equal to a given value l, closed-form expressions for the distribution of the endpoint of the walk were obtained altogether for any n for d=1, 2, 4 . Uniform distributions of the endpoint inside a ball of radius l were evidenced for a walk of three steps in 2D and of two steps in 4D. The previous walk is generalized by considering step lengths which are distributed over the unit (n-1) simplex according to a Dirichlet distribution whose parameters are all equal to q, a given positive value. The walk and the flight above correspond to q=1. For any d >= 3, there exist, for integer and half-integer values of q, two families of Pearson-Dirichlet walks which share a common property. For any n, the d components of the endpoint are jointly distributed as are the d components of a vector uniformly distributed over the surface of a hypersphere of radius l in a space Rk whose dimension k is an affine function of n for a given d. Five additional walks, with a uniform distribution of the endpoint in the inside of a ball, are found from known finite integrals of products of powers and Bessel functions of the first kind. They include four different walks in R3 and two walks in R4. Pearson-Liouville random walks, obtained by distributing the total lengths of the previous Pearson-Dirichlet walks, are finally discussed.Comment: 33 pages 1 figure, the paper includes the content of a recently submitted work together with additional results and an extended section on Pearson-Liouville random walk
    • …
    corecore