39 research outputs found

    Harnessing Population Genetics for Pest Management: Theory and Application for Urban Rats

    Get PDF
    Effective management of rodent pests requires an ecological understanding of how they move through their environment and how those movements influence the invasion, persistence, or reinvasion of problematic colonies. Traditional methodologies used to describe rodent movement patterns, such as mark-recapture, are hindered by their time-consuming nature and limited geographic scope. As such, our understanding of how rodents interact with urban environments remains limited. Population genetic principles and tools have the capacity to greatly increase our understanding of rodent population dynamics, ecological relationships, and movements across space, but this field is often unapproachable to non-scientist pest management professionals (PMPs). In this commentary, we aim to promote collaborative and integrative rodent pest management by introducing relevant population genetic principles, providing examples of their applications in studies of urban brown rats (Rattus norvegicus), and proposing future initiatives that link scientific, private, and government entities. We reinterpret results from a 2018 study of brown rats in Vancouver, British Columbia, Canada to show how genetic relationships among individual brown rats can be used to understand the geographic distribution of genetic clusters (i.e., colonies), natural barriers to migration, and the spatial scale of dispersal. While the 2018 study originally aimed to describe patterns of population genetic structure to understand the influence of urban landscapes on rats, here we describe how these results can be exploited by PMPs to directly inform the creation of management units and decrease the likelihood of rapid post-treatment reinvasion. Further, we discuss the difficulties inherent in population genetic studies and the potential for high-quality model sites to develop generalizable strategies. Overall, we hope to expand the toolbox of PMPs, foster collaboration, and move toward more informed and sustainable management strategies

    Rats About Town: A Systematic Review of Rat Movement in Urban Ecosystems

    Get PDF
    Norway and black rats (Rattus norvegicus and Rattus rattus) are ubiquitous urban pests, inhabiting cities worldwide. Despite their close association with people, urban rats remain difficult to control. This can be partly attributed to a general lack of information on basic rat ecology to inform management efforts. In this systematic review and narrative synthesis, we collate the published literature to provide a comprehensive description of what is known about urban rat movement, including information on home range, site fidelity, dispersal, movement patterns, barriers to, and factors impacting, movement. We also discuss the methodologies used to track and infer rat movement, as well as the advantages and limitations of employing these techniques. Our review suggests that the distances traveled by urban rats are location-specific, determined by both local resource availability and barriers to movement such as roadways. Although roads may impede rat movement, genetic techniques suggest that rats traverse roadways more often than revealed by capture-based tools, while long-distance dispersal events by either natural migration or facilitated by humans (i.e., as stowaways in transport vehicles) can maintain connectivity among distant populations. Because rat movement patterns are related to the transmission of rat-associated pathogens and the success of rodent control programs, these results have implications for city planners, pest control efforts, and public health. Therefore, we emphasize the importance of understanding local rat movement patterns in order to devise and deploy efficient and effective rat mitigation initiatives in urban centers

    Public Complaints Reflect Rat Relative Abundance Across Diverse Urban Neighborhoods

    Get PDF
    Preventing infestations of rats is crucial for minimizing property damage and the transmission of rat-associated pathogens to humans. Due to the logistical challenges in assessing rat abundance over large areas, public officials must often use the number of public rat complaints to estimate the relative abundance of rats and the subsequent need for rodent control. However, the likelihood of reporting complaints may be driven by socioeconomic factors and therefore may not accurately reflect rat abundance. In this study, we tested whether the number of rat complaints reflect rat relative abundance and if rat complaints and abundance are higher in alleys with greater levels of harborage, food attractants, and poor structural integrity. We conducted this study in Chicago, IL, USA where public rat complaints have risen by 39% from 2008 up to 45,887 in 2017, and where socioeconomic factors vary considerably across neighborhoods. We assessed municipal rat complaints, census data, and land cover data for 77 community areas across Chicago. In collaboration with pest management professionals, we trapped brown rats (Rattus norvegicus) in alleys in 13 community areas that varied from low to high measures of household income and urban development. At trapping sites, we recorded signs of rat activity, attractants, and infrastructure condition. Based on candidate model comparisons using linear models, we found that rat complaints were most associated with rat trap success. Rat trap success was most associated with increasing complaints, percent of rented housing units, and decreasing vacant land. At a local scale, alleys with more complaints and higher trap success also had more uncontained garbage. Our results demonstrate that, at least in Chicago, public reporting can serve as a useful tool to identify areas of greater rat activity for targeted control efforts. Our study also suggests the need for habitat modification to minimize access to attractants. Finally, our results highlight how partnerships between researchers and private practitioners can facilitate large-scale projects on rat infestation risks in urban areas

    Tails of Two Cities: Age and Wounding Are Associated With Carriage of Leptospira interrogans by Norway Rats (Rattus norvegicus) in Ecologically Distinct Urban Environments

    Get PDF
    Leptospirosis is a zoonotic disease for which rats are the primary reservoir in urban environments. It is transmitted from rats to people via urine, and is responsible for significant human morbidity and mortality in under-resourced settings. To mitigate the risks posed to people, it is important to understand the ecology of the causative agent Leptospira interrogans. The overarching objective of this study was to compare L. interrogans carriage in urban Norway rats in two ecologically distinct urban environments. We trapped Norway rats (Rattus norvegicus) in Vancouver, Canada (N = 525) and Salvador, Brazil (N = 433) to evaluate whether rat characteristics (i.e., sex, weight, sexual maturity, pregnancy, and the presence of wounds) and location of capture were associated with L. interrogans status. Using generalized linear mixed models to control for clustering by trapping location, we found a greater prevalence of L. interrogans in Salvador (79%) than in Vancouver (12%), and greater spatial heterogeneity in pathogen prevalence in Vancouver than in Salvador. In both locations, we found that older rats and rats with more bite wounds had greater odds of L. interrogans carriage, although wounding influenced pathogen status more for younger animals. Additionally, we found that juvenile rats in Salvador were more likely to leave the nest infected with L. interrogans than were rats in Vancouver, suggesting that potential differences in early-life transmission dynamics exist between the two locations. Together, these results elucidate both general L. interrogans ecology, as well as the importance of geographical location in determining transmission among rats

    Rat in a Cage: Trappability of Urban Norway Rats (Rattus norvegicus)

    Get PDF
    Understanding the local ecology of urban Norway rats (Rattus norevgicus) is necessary to inform effective rat mitigation strategies. While Capture-Mark-Recapture (CMR) methods can be used to acquire such ecological information (e.g., abundance, movement patterns, and habitat use), these techniques assume that all individuals of the study population are equally trappable. To test whether urban rats adhere to this assumption, we conducted a 4-week CMR study in an urban neighborhood of Vancouver, Canada, to evaluate whether rat characteristics (i.e., age, sex, size, wound status, and infection with the pathogen Leptospira spp.) were associated with trappability. We found that the majority of rats entered traps in the first 2 weeks of trapping, and that larger rats were caught earlier in the trapping period. However, smaller, sexually immature rats were recaught more often than were larger, sexually mature rats, suggesting that prior capture affects the ability to recapture urban Norway rats. This highlights the need for CMR studies to account for size, sexual maturity, and prior capture when interpreting data

    Tails of Two Cities: Age and Wounding Are Associated With Carriage of Leptospira interrogans by Norway Rats (Rattus norvegicus) in Ecologically Distinct Urban Environments

    Get PDF
    Leptospirosis is a zoonotic disease for which rats are the primary reservoir in urban environments. It is transmitted from rats to people via urine, and is responsible for significant human morbidity and mortality in under-resourced settings. To mitigate the risks posed to people, it is important to understand the ecology of the causative agent Leptospira interrogans. The overarching objective of this study was to compare L. interrogans carriage in urban Norway rats in two ecologically distinct urban environments. We trapped Norway rats (Rattus norvegicus) in Vancouver, Canada (N = 525) and Salvador, Brazil (N = 433) to evaluate whether rat characteristics (i.e., sex, weight, sexual maturity, pregnancy, and the presence of wounds) and location of capture were associated with L. interrogans status. Using generalized linear mixed models to control for clustering by trapping location, we found a greater prevalence of L. interrogans in Salvador (79%) than in Vancouver (12%), and greater spatial heterogeneity in pathogen prevalence in Vancouver than in Salvador. In both locations, we found that older rats and rats with more bite wounds had greater odds of L. interrogans carriage, although wounding influenced pathogen status more for younger animals. Additionally, we found that juvenile rats in Salvador were more likely to leave the nest infected with L. interrogans than were rats in Vancouver, suggesting that potential differences in early-life transmission dynamics exist between the two locations. Together, these results elucidate both general L. interrogans ecology, as well as the importance of geographical location in determining transmission among rats

    Untangling urban rat-associated health risks in disadvantaged neighbourhoods : from movement to mental health

    No full text
    Urban Norway rats (Rattus norvegicus) carry a number of pathogens transmissible to people, and the prevalence of these pathogens can vary across fine spatial scales. While pathogen prevalence is an important determinant of human health risk, the transmission of these pathogens to people is closely linked to how rats and humans interact in cities. In this thesis, I investigated how interactions between urban rats, their environment, and people could influence human health risks. To do this, I explored whether rat movement could explain heterogeneous patterns of pathogen prevalence. First, in Chapter 2, I synthesized the published literature and found that rat movement is largely restricted by resource availability and landscape barriers such as roadways. Then, in Chapters 3 – 5, I combined ecological and genomics-based approaches to describe rat movement in Vancouver’s Downtown Eastside, an area where pathogen clustering has been previously documented. In Chapter 3, I demonstrated that movement estimates derived from capture-mark-recapture methods are prone to bias due to smaller individuals more frequently re-entering traps than larger individuals. Given issues of unequal trappability, in Chapter 4, I evaluated the utility of using Global Positioning System tags to track urban rats and found that these tools are currently ineffective due to tag loss and signal obstruction. In Chapter 5, I used rat genetics to identify related individuals and the distances between them. I demonstrated that 99% of highly related rat pairs (i.e., parent-offspring and full-sibling pairs) were trapped in the same city block, revealing infrequent dispersal among blocks, which aligned with patterns of pathogen clustering in this population. Finally, in Chapter 6, I interviewed residents of this neighbourhood about their experiences living with rats and illustrated that frequent and close contact with rats negatively impacted the mental health of residents. Overall, my research suggests that minimal movement of rats may lead to a clustering of rat-associated pathogens. Further, my work reveals that even in the absence of disease, interactions with rats may negatively impact the mental health of those living with them. Together, this information can be used to more effectively manage rat-associated health risks in cities.Graduate and Postdoctoral StudiesGraduat

    Morphology of genitalia and non-genitalic contact structures in Trouessartia feather mites (Astigmata: Analgoidea: Trouessartiidae): is there evidence of correlated evolution between the sexes?

    No full text
    Positive correlations between the shapes of male and female sexual structures can be interpreted as cooperative or as combative. In the feather mite genus Trouessartia Canestrini, 1899, the spermaducts of females range from entirely internal to extending externally for varying lengths, whereas male primary genitalia range from gracile to massive. Males also possess a pair of adanal suckers used to hold onto the dorsal surface of the female during copulation. In the area of this attachment, females exhibit ornamentation and have strongly developed dorsal setae (setae h1), which we hypothesized serve to weaken the male’s hold during copulation. In male and female Trouessartia from 51 bird species, we compared female external spermaduct length and male genitalic “massiveness” and explored whether patterns of female dorsal ornamentation and (or) h1 seta size correlate with male adanal sucker size. Our results indicate that females with longer external spermaducts are associated with males with relatively massive genitalia. However, we found no significant relationship between male adanal sucker size and female ornamentation or h1 seta size. Further information regarding how the genitalia interact during sperm transfer is necessary to interpret correlations in genitalia size and strong intersexual differences in dorsal ornamentation and seta size in Trouessartia.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Rats! Purveyors of pestilence or public health helpers?

    No full text
    Are rats disgusting bearers of plagues? Or are they public health indicators to which we should really be paying attention? Held just prior to Halloween, this talk featured SPPH Assistant Professor Jennifer Gardy, who spoke about how animal, environmental, and human health are all linked, BCCDC Virology Laboratory program head Dr. Agatha Jassem who discussed what diseases humans could catch from our rodent cohabitants, and UBC PhD students, and Vancouver Rat Project researchers, Michael Lee and Kaylee Byers, discussed their work studying urban rat populations, including how rats might affect human health, and just what a rat safari is.Graduate and Postdoctoral StudiesMedicine, Faculty ofPathology and Laboratory Medicine, Department ofPopulation and Public Health (SPPH), School ofUnreviewedFacultyGraduat
    corecore