964 research outputs found
Development of improved lithium tantalate pyroelectric detectors
A program was undertaken to increase the detectivity of LiTaO3 pyroelectric detectors to meet a performance requirement of D star (500 K, 15 Hz)=4x10 to the 9th power cm Hz1/2W-1. Emphasis was placed on reduction of the thermal conductance of the detector element to its surroundings, thinning the detector wafer to a thickness less than 3 micrometers, and increasing the absorptivity of the standard metallic film coatings. During the program, thermal conductance was reduced 41 percent through the use of reticulated (slotted) structures. Self-supported detector wafers less than 2 micrometers thick were fabricated. Multiple layer coatings, including an AR coating, with 16 percent more absorptance, were designed and fabricated. Later refinements in the multilayer design program have absorptivities of 75-80 percent, but detectors with these coatings had to be more than 2 micrometers thick because of a mismatch in the thermal expansion coefficients with LiTaO3
Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry-Perot ring-cavity premode cleaner
We report on the use of a fixed-spacer Fabry–Perot ring cavity to filter spatially and temporally a 10-W laser-diode-pumped Nd:YAG master-oscillator power amplifier. The spatial filtering leads to a 7.6-W TEMinfinity beam with 0.1% higher-order transverse mode content. The temporal filtering reduces the relative power fluctuations at 10 MHz to 2.8 x 10^-/sqrtHz, which is 1 dB above the shot-noise limit for 50 mA of detected photocurrent
W-band 0.3W PHEMT MMIC power amplifier module
A compact (1.8 by 3.0 by 3.8 cm) WR-10 waveguide amplifier module providing 310-mW power output, 20-dB gain, and 5 GHz of 1-dB bandwidth at a center frequency of 96 GHz is described. The module is comprised of 22 identical PHEMT chips, 4-way microstrip power combiners and dividers, and a 4-way waveguide power combiner
Orthotopic Xenografting of Human Luciferase-Tagged Malignant Peripheral Nerve Sheath Tumor Cells for in vivo Testing of Candidate Therapeutic Agents
Although in vitro screens are essential for the initial identification of candidate therapeutic agents, a rigorous assessment of the drug's ability to inhibit tumor growth must be performed in a suitable animal model. The type of animal model that is best for this purpose is a topic of intense discussion. Some evidence indicates that preclinical trials examining drug effects on tumors arising in transgenic mice are more predictive of clinical outcome1and so candidate therapeutic agents are often tested in these models. Unfortunately, transgenic models are not available for many tumor types. Further, transgenic models often have other limitations such as concerns as to how well the mouse tumor models its human counterpart, incomplete penetrance of the tumor phenotype and an inability to predict when tumors will develop
Charge neutralization in vacuum for non-conducting and isolated objects using directed low-energy electron and ion beams
We propose using ions and electrons of energy 1 eV–10 eV for neutralizing the charges on the non-conducting or isolated surfaces of high-sensitivity experiments. The mirror surfaces of the test masses of the laser interferometer gravitational observatory are used as an example of the implementation of this method. By alternatively directing beams of positive and negative charges towards the mirror surfaces, we ensure the neutralization of the total charge as well as the equalization of the surface charge distribution to within a few eV of the potential of the ground reference of the vacuum system. This method is compatible with operation in high vacuum, does not require measuring the potential of the mirrors and is expected not to damage sensitive optical surfaces
Elastic response of [111]-tunneling impurities
We study the dynamic response of a [111] quantum impurity, such as lithium or
cyanide in alkali halides, with respect to an external field coupling to the
elastic quadrupole moment. Because of the particular level structure of a
eight-state system on a cubic site, the elastic response function shows a
biexponential relaxation feature and a van Vleck type contribution with a
resonance frequency that is twice the tunnel frequency . This
basically differs from the dielectric response that does not show relaxation.
Moreover, we show that the elastic response of a [111] impurity cannot be
reduced to that of a two-level system. In the experimental part, we report on
recent sound velocity and internal friction measurements on KCl doped with
cyanide at various concentrations. At low doping (45 ppm) we find the dynamics
of a single [111] impurity, whereas at higher concentrations (4700 ppm) the
elastic response rather indicates strongly correlated defects. Our theoretical
model provides a good description of the temperature dependence of
and at low doping, in particular the relaxation peaks, the absolute
values of the amplitude, and the resonant contributions. From our fits we
obtain the value of the elastic deformation potential eV.Comment: 19 pages, 5 figure
W-band 0.3W PHEMT MMIC power amplifier module
A compact (1.8 by 3.0 by 3.8 cm) WR-10 waveguide amplifier module providing 310-mW power output, 20-dB gain, and 5 GHz of 1-dB bandwidth at a center frequency of 96 GHz is described. The module is comprised of 22 identical PHEMT chips, 4-way microstrip power combiners and dividers, and a 4-way waveguide power combiner
Persistent current in a one-dimensional ring of fractionally charged "exclusons''
The Aharonov-Bohm effect in a one-dimensional (1D) ring containing a gas of
fractionally charged excitations is considered. It is shown that the low
temperature behavior of the system is identical to that of free electrons with
(integer) charge . This is a direct consequence of the fact that the total
charge in the ring is quantized in units of the electron charge. Anomalous
oscillations of the persistent current amplitude with temperature are predicted
to occur as a direct manifistation of the fractional nature of the
quasiparticle charge. A 1D conducting ring with gate induced periodical
potential is discussed as a possible set-up for an experimental observation of
the predicted phenomenon.Comment: 4 pages, RevTex, uuencoded figure
Spatial and temporal filtering of a 10-W Nd:YAG laser with a Fabry–Perot ring-cavity premode cleaner
Planning for population viability on Northern Great Plains national grasslands
Broad-scale information in concert with conservation of individual species must be used to develop conservation priorities and a more integrated ecosystem protection strategy. In 1999 the United States Forest Service initiated an approach for the 1.2 x 106 ha of national grasslands in the Northern Great Plains to fulfill the requirement to maintain viable populations of all native and desirable introduced vertebrate and plant species. The challenge was threefold: 1) develop basic building blocks in the conservation planning approach, 2) apply the approach to national grasslands, and 3) overcome differences that may exist in agency-specific legal and policy requirements. Key assessment components in the approach included a bioregional assessment, coarse-filter analysis, and fine-filter analysis aimed at species considered at-risk. A science team of agency, conservation organization, and university personnel was established to develop the guidelines and standards and other formal procedures for implementation of conservation strategies. Conservation strategies included coarse-filter recommendations to restore the tallgrass, mixed, and shortgrass prairies to conditions that approximate historical ecological processes and landscape patterns, and fine-filter recommendations to address viability needs of individual and multiple species of native animals and plants. Results include a cost-effective approach to conservation planning and recommendations for addressing population viability and biodiversity concerns on national grasslands in the Northern Grea
- …