119 research outputs found

    Properties of Central Caustics in Planetary Microlensing

    Full text link
    To maximize the number of planet detections, current microlensing follow-up observations are focusing on high-magnification events which have a higher chance of being perturbed by central caustics. In this paper, we investigate the properties of central caustics and the perturbations induced by them. We derive analytic expressions of the location, size, and shape of the central caustic as a function of the star-planet separation, ss, and the planet/star mass ratio, qq, under the planetary perturbative approximation and compare the results with those based on numerical computations. While it has been known that the size of the planetary caustic is \propto \sqrt{q}, we find from this work that the dependence of the size of the central caustic on qq is linear, i.e., \propto q, implying that the central caustic shrinks much more rapidly with the decrease of qq compared to the planetary caustic. The central-caustic size depends also on the star-planet separation. If the size of the caustic is defined as the separation between the two cusps on the star-planet axis (horizontal width), we find that the dependence of the central-caustic size on the separation is \propto (s+1/s). While the size of the central caustic depends both on ss and q, its shape defined as the vertical/horizontal width ratio, R_c, is solely dependent on the planetary separation and we derive an analytic relation between R_c and s. Due to the smaller size of the central caustic combined with much more rapid decrease of its size with the decrease of q, the effect of finite source size on the perturbation induced by the central caustic is much more severe than the effect on the perturbation induced by the planetary caustic. Abridged.Comment: 5 pages, 4 figures, ApJ accepte

    WITHDRAWN: Effects of various glycerol concentrations and thawing temperatures on CASA parameters and acrosomal integrity of frozen–thawed canine spermatozoa

    Get PDF
    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause.The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy

    Correlation of photoluminescent quantum efficiency and device characteristics for the soluble electrophosphorescent light emitter with interfacial layers

    Get PDF
    We have investigated the effects of interfacial layers on the properties of soluble phosphorescent organic light emitting devices. Two kinds of polyfluorene-based interfacial layer materials have been studied; both were spin coated on top of PEDOT:PSS to form the insoluble layers by thermal annealing. The molecular-doped, phosphorescent light emitting layer comprising a polymeric host, small molecular host, and guest molecule was fabricated onto the thin interfacial layer. The photoluminescence quantum yield (PLQY) of these layers was measured with an integrating sphere. We have calculated the PLQY values of the single phosphorescent light emitting layer and various organic multilayers incorporating the interfacial layers, showing that a reduction in PLQY due to the interfacial quenching is more significant in the thicker interfacial layer structures. In spite of the decrease in PLQY induced by the triplet energy mismatch, polyfluorene-based interfacial layers improved the charge injection from PEDOT:PSS to the emitting layer, which results in the enhanced brightness and current. The triplet quenching by the interfacial layer could explain the reduction in luminous efficiency of the devices compared to the reference. This was also investigated by studying the charge carrier trapping, change in the spectral characteristics induced by the shift in the emission zone, and the analysis on the carrier balance of devices.This research was supported by the Seoul R&BD support program (CR070048) and SystemIC2010 project, Ministry of Knowledge Economy, Korea

    Gravitational Microlensing: A Tool for Detecting and Characterizing Free-Floating Planets

    Full text link
    Various methods have been proposed to search for extrasolar planets. Compared to the other methods, microlensing has unique applicabilities to the detections of Earth-mass and free-floating planets. However, the microlensing method is seriously flawed by the fact that the masses of the detected planets cannot be uniquely determined. Recently, Gould, Gaudi, & Han introduced an observational setup that enables one to resolve the mass degeneracy of the Earth-mass planets. The setup requires a modest adjustment to the orbit of an already proposed Microlensing planet-finder satellite combined with ground-based observations. In this paper, we show that a similar observational setup can also be used for the mass determinations of free-floating planets with masses ranging from ~0.1 M_J to several Jupiter masses. If the proposed observational setup is realized, the future lensing surveys will play important roles in the studies of Earth-mass and free-floating planets, which are the populations of planets that have not been previously probed.Comment: total 8 pages, including 3 figures, ApJ, in press (Mar 1, 2004

    Self-assembled adipose-derived mesenchymal stem cells as an extracellular matrix component- and growth factor-enriched filler

    Get PDF
    The clinical application of mesenchymal stem cells (MSCs) is attracting attention due to their excellent safety, convenient acquisition, multipotency, and trophic activity. The clinical effectiveness of transplanted MSCs is well-known in regenerative and immunomodulatory medicine, but there is a demand for their improved viability and regenerative function after transplantation. In this study, we isolated MSCs from adipose tissue from three human donors and generated uniformly sized MSC spheroids (∼100 µm in diameter) called microblocks (MiBs) for dermal reconstitution. The viability and MSC marker expression of MSCs in MiBs were similar to those of monolayer MSCs. Compared with monolayer MSCs, MiBs produced more extracellular matrix (ECM) components, including type I collagen, fibronectin, and hyaluronic acid, and growth factors such as vascular endothelial growth factor and hepatocyte growth factor. Subcutaneously injected MiBs showed skin volume retaining capacity in mice. These results indicate that MiBs could be applied as regenerative medicine for skin conditions such as atrophic scar by having high ECM and bioactive factor expression

    Prediction of cognitive impairment via deep learning trained with multi-center neuropsychological test data

    Get PDF
    Background Neuropsychological tests (NPTs) are important tools for informing diagnoses of cognitive impairment (CI). However, interpreting NPTs requires specialists and is thus time-consuming. To streamline the application of NPTs in clinical settings, we developed and evaluated the accuracy of a machine learning algorithm using multi-center NPT data. Methods Multi-center data were obtained from 14,926 formal neuropsychological assessments (Seoul Neuropsychological Screening Battery), which were classified into normal cognition (NC), mild cognitive impairment (MCI) and Alzheimers disease dementia (ADD). We trained a machine learning model with artificial neural network algorithm using TensorFlow (https://www.tensorflow.org) to distinguish cognitive state with the 46-variable data and measured prediction accuracies from 10 randomly selected datasets. The features of the NPT were listed in order of their contribution to the outcome using Recursive Feature Elimination. Results The ten times mean accuracies of identifying CI (MCI and ADD) achieved by 96.66 ± 0.52% of the balanced dataset and 97.23 ± 0.32% of the clinic-based dataset, and the accuracies for predicting cognitive states (NC, MCI or ADD) were 95.49 ± 0.53 and 96.34 ± 1.03%. The sensitivity to the detection CI and MCI in the balanced dataset were 96.0 and 96.0%, and the specificity were 96.8 and 97.4%, respectively. The time orientation and 3-word recall score of MMSE were highly ranked features in predicting CI and cognitive state. The twelve features reduced from 46 variable of NPTs with age and education had contributed to more than 90% accuracy in predicting cognitive impairment. Conclusions The machine learning algorithm for NPTs has suggested potential use as a reference in differentiating cognitive impairment in the clinical setting.The publication costs, design of the study, data management and writing the manuscript for this article were supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2017S1A6A3A01078538), Korea Ministry of Health & Welfare, and from the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Korean Government (MSIP; No. 2014M3C7A1064752)

    Consideration of the Role of Plasma in a Plasma-Coupled Selective Catalytic Reduction of Nitrogen Oxides with a Hydrocarbon Reducing Agent

    No full text
    The purpose of this study is to explain how plasma improves the performance of selective catalytic reduction (SCR) of nitrogen oxides (NOx) with a hydrocarbon reducing agent. In the plasma-coupled SCR process, NOx reduction was performed with n-heptane as a reducing agent over Ag/γ-Al2O3 as a catalyst. We found that the plasma decomposes n-heptane into several oxygen-containing products such as acetaldehyde, propionaldehyde and butyraldehyde, which are more reactive than the parent molecule n-heptane in the SCR process. Separate sets of experiments using acetaldehyde, propionaldehyde and butyraldehyde, one by one, as a reductant in the absence of plasma, have clearly shown that the presence of these partially oxidized compounds greatly enhanced the NOx conversion. The higher the discharge voltage, the more the amounts of such partially oxidized products. The oxidative species produced by the plasma easily converted NO into NO2, but the increase of the NO2 fraction was found to decrease the NOx conversion. Consequently, it can be concluded that the main role of plasma in the SCR process is to produce partially oxidized compounds (aldehydes), having better reducing power. The catalyst-alone NOx removal efficiency with n-heptane at 250 °C was measured to be less than 8%, but it increased to 99% in the presence of acetaldehyde at the same temperature. The NOx removal efficiency with the aldehyde reducing agent was higher as the number of carbons in the aldehyde was more; for example, the NOx removal efficiencies at 200 °C with butyraldehyde, propionaldehyde and acetaldehyde were measured to be 83.5%, 58.0% and 61.5%, respectively, which were far above the value (3%) obtained with n-heptane
    corecore