4 research outputs found

    Efficient Carrier Separation and Intriguing Switching of Bound Charges in Inorganic–Organic Lead Halide Solar Cells

    No full text
    We fabricated a mesoporous perovskite solar cell with a ∼14% conversion efficiency, and we investigated its beneficial grain boundary properties of the perovskite solar cells through the use of scanning probe microscopy. The CH<sub>3</sub>NH<sub>3</sub>Pb­(I<sub>0.88</sub>,Br<sub>0.12</sub>)<sub>3</sub> showed a significant potential barrier bending at the grain boundary and induced passivation. The potential difference value in the <i>x</i> = 0.00 sample is ∼50 mV, and the distribution of the positive potential is lower than that of the <i>x</i> = 0.12 sample. We also investigated the polarization and hysteretic properties of the perovskite thin films by measuring the local piezoresponse. Specifically, the charged grain boundaries play a beneficial role in electron–hole depairing and in suppressing recombination in order to realize high-efficiency perovskite solar cells

    Observation of Enhanced Hole Extraction in Br Concentration Gradient Perovskite Materials

    No full text
    Enhancing hole extraction inside the perovskite layer is the key factor for boosting photovoltaic performance. Realization of halide concentration gradient perovskite materials has been expected to exhibit rapid hole extraction due to the precise bandgap tuning. Moreover, a formation of Br-rich region on the tri-iodide perovskite layer is expected to enhance moisture stability without a loss of current density. However, conventional synthetic techniques of perovskite materials such as the solution process have not achieved the realization of halide concentration gradient perovskite materials. In this report, we demonstrate the fabrication of Br concentration gradient mixed halide perovskite materials using a novel and facile halide conversion method based on vaporized hydrobromic acid. Accelerated hole extraction and enhanced lifetime due to Br gradient was verified by observing photoluminescence properties. Through the combination of secondary ion mass spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy analysis, the diffusion behavior of Br ions in perovskite materials was investigated. The Br-gradient was found to be eventually converted into a homogeneous mixed halide layer after undergoing an intermixing process. Br-substituted perovskite solar cells exhibited a power conversion efficiency of 18.94% due to an increase in open circuit voltage from 1.08 to 1.11 V and an advance in fill-factor from 0.71 to 0.74. Long-term stability was also dramatically enhanced after the conversion process, i.e., the power conversion efficiency of the post-treated device has remained over 97% of the initial value under high humid conditions (40–90%) without any encapsulation for 4 weeks

    BiVO<sub>4</sub>/WO<sub>3</sub>/SnO<sub>2</sub> Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell

    No full text
    Coupling dissimilar oxides in heterostructures allows the engineering of interfacial, optical, charge separation/transport and transfer properties of photoanodes for photoelectrochemical (PEC) water splitting. Here, we demonstrate a double-heterojunction concept based on a BiVO<sub>4</sub>/WO<sub>3</sub>/SnO<sub>2</sub> triple-layer planar heterojunction (TPH) photoanode, which shows simultaneous improvements in the charge transport (∼93% at 1.23 V vs RHE) and transmittance at longer wavelengths (>500 nm). The TPH photoanode was prepared by a facile solution method: a porous SnO<sub>2</sub> film was first deposited on a fluorine-doped tin oxide (FTO)/glass substrate followed by WO<sub>3</sub> deposition, leading to the formation of a double layer of dense WO<sub>3</sub> and a WO<sub>3</sub>/SnO<sub>2</sub> mixture at the bottom. Subsequently, a BiVO<sub>4</sub> nanoparticle film was deposited by spin coating. Importantly, the WO<sub>3</sub>/(WO<sub>3</sub>+SnO<sub>2</sub>) composite bottom layer forms a disordered heterojunction, enabling intimate contact, lower interfacial resistance, and efficient charge transport/transfer. In addition, the top BiVO<sub>4</sub>/WO<sub>3</sub> heterojunction layer improves light absorption and charge separation. The resultant TPH photoanode shows greatly improved internal quantum efficiency (∼80%) and PEC water oxidation performance (∼3.1 mA/cm<sup>2</sup> at 1.23 V vs RHE) compared to the previously reported BiVO<sub>4</sub>/WO<sub>3</sub> photoanodes. The PEC performance was further improved by a reactive-ion etching treatment and CoO<sub><i>x</i></sub> electrocatalyst deposition. Finally, we demonstrated a bias-free and stable solar water-splitting by constructing a tandem PEC device with a perovskite solar cell (STH ∼3.5%)

    New Hybrid Hole Extraction Layer of Perovskite Solar Cells with a Planar p–i–n Geometry

    No full text
    We report a highly efficient p–i–n type planar perovskite solar cell with a hybrid PEDOT/NiO<sub><i>x</i></sub> hole-extraction layer. It has been found that the perovskite solar cell with a NiO<sub><i>x</i></sub> thin film as a hole-extraction layer generally exhibits lower fill factor compared to the conventionally used PEDOT:PSS thin film, whereas it shows higher photocurrent and photovoltage. The fill factor of the NiO<sub><i>x</i></sub>-based perovskite solar cell can be significantly improved by treating the NiO<sub><i>x</i></sub> surface with a dilute PEDOT solution. The photoluminescence quenching study and impedance spectroscopic (IS) analysis have revealed that the hole injection at the perovskite/NiO<sub><i>x</i></sub> interface is significantly facilitated with the PEDOT treatment, which should lead to the increased fill factor. As a result, the p–i–n type planar perovskite solar cell with the new hybrid hole-extraction layer exhibits a high conversion efficiency of 15.1% without the hysteresis effect
    corecore