47 research outputs found

    Circumstellar Hibonite and Corundum and Nucleosynthesis in Asymptotic Giant Branch Stars

    Get PDF
    We report the discovery of two hibonite grains (CaAl_(12)O_(19)) whose isotopic compositions show that they formed in the winds of red giant and asymptotic giant branch (AGB) stars. While hibonite is the second major phase (after corundum, Al_2O_3) expected to condense from stellar ejecta with C/O < 1, it has not previously been found. One circumstellar hibonite grain is highly enriched in ^(17)O and slightly depleted in ^(18)O relative to the solar composition and has large excesses in ^(26)Mg and ^(41)K, decay products of ^(26)Al and ^(41)Ca. The inferred initial values (^(26)Al/^(27)Al)0 ≈ 5 × 10^(-3) and (^(41)Ca/^(40)Ca)0 ≈ 1.5 × 10^(-4) of this grain are consistent with models of nucleosynthesis in an AGB star. The other hibonite is enriched in ^(17)O, strongly depleted in ^(18)O, shows no evidence of ^(41)Ca and formed with (^(26)Al/^(27)Al)0 ≈ 2 × 10^(-2). The low ^(18)O/^(16)O and very high (^(26)Al/^(27)Al)_0 may indicate substantial proton exposure during cool bottom processing in a low-mass parent star. The low upper limit on ^(41)Ca/^(40)Ca (≤ 3.2 × 10^(-5)) implies that little or no He-shell material had been dredged into the envelope when this grain formed. We also report isotopic compositions for 12 new circumstellar corundum grains. The compositions of 11 of these grains are consistent with current models for red giant and AGB stars. One corundum grain has extremely high ^(17)O/^(16)O and near-solar ^(18)O/^(16)O and may have formed in a star that was initially enriched in ^(17)O and ^(18)O

    Clastic matrix in EH3 chondrites

    Get PDF
    Patches of clastic matrix (15 to 730 μm in size) constitute 4.9 vol% of EH3 Yamato (Y-) 691 and 11.7 vol% of EH3 Allan Hills (ALH) 81189. Individual patches in Y-691 consist of 1) ~25 vol% relatively coarse opaque grain fragments and polycrystalline assemblages of kamacite, schreibersite, perryite, troilite (some grains with daubréelite exsolution lamellae), niningerite, oldhamite, and caswellsilverite; 2) ~30 vol% relatively coarse silicate grains including enstatite, albitic plagioclase, silica and diopside; and 3) an inferred fine nebular component (~45 vol%) comprised of submicrometer-size grains. Clastic matrix patches in ALH 81189 contain relatively coarse grains of opaques (~20 vol%; kamacite, schreibersite, perryite and troilite) and silicates (~30 vol%; enstatite, silica and forsterite) as well as an inferred fine nebular component (~50 vol%). The O-isotopic composition of clastic matrix in Y-691 is indistinguishable from that of olivine and pyroxene grains in adjacent chondrules; both sets of objects lie on the terrestrial mass-fractionation line on the standard three-isotope graph. Some patches of fine-grained matrix in Y-691 have distinguishable bulk concentrations of Na and K, inferred to be inherited from the solar nebula. Some patches in ALH 81189 differ in their bulk concentrations of Ca, Cr, Mn, and Ni. The average compositions of matrix material in Y-691 and ALH 81189 are similar but not identical—matrix in ALH 81189 is much richer in Mn (0.23 ± 0.05 versus 0.07 ± 0.02 wt%) and appreciably richer in Ni (0.36 ± 0.10 versus 0.18 ± 0.05 wt%) than matrix in Y-691. Each of the two whole-rocks exhibits a petrofabric, probably produced by shock processes on their parent asteroid

    Clinical Practice Guidelines for the Endoscopic Management of Peripancreatic Fluid Collections

    Get PDF
    Endoscopic ultrasonography-guided intervention has gradually become a standard treatment for peripancreatic fluid collections (PFCs). However, it is difficult to popularize the procedure in Korea because of restrictions on insurance claims regarding the use of endoscopic accessories, as well as the lack of standardized Korean clinical practice guidelines. The Korean Society of Gastrointestinal Endoscopy (KSGE) appointed a Task Force to develope medical guidelines by referring to the manual for clinical practice guidelines development prepared by the National Evidence-Based Healthcare Collaborating Agency. Previous studies on PFCs were searched, and certain studies were selected with the help of experts. Then, a set of key questions was selected, and treatment guidelines were systematically reviewed. Answers to these questions and recommendations were selected via peer review. This guideline discusses endoscopic management of PFCs and makes recommendations on Indications for the procedure, pre-procedural preparations, optimal approach for drainage, procedural considerations (e.g., types of stent, advantages and disadvantages of plastic and metal stents, and accessories), adverse events of endoscopic intervention, and procedural quality issues. This guideline was reviewed by external experts and suggests best practices recommended based on the evidence available at the time of preparation. This will be revised as necessary to address advances and changes in technology and evidence obtained in clinical practice and future studies
    corecore