950 research outputs found

    Double-exciton component of the cyclotron spin-flip mode in a quantum Hall ferromagnet

    Full text link
    We report on the calculation of the cyclotron spin-flip excitation (CSFE) in a spin-polarized quantum Hall system at unit filling. This mode has a double-exciton component which contributes to the CSFE correlation energy but can not be found by means of a mean field approach. The result is compared with available experimental data.Comment: 9 pages, 2 figure

    Spin relaxation and anticrossing in quantum dots: Rashba versus Dresselhaus spin-orbit coupling

    Full text link
    The spin-orbit splitting of the electron levels in a two-dimensional quantum dot in a perpendicular magnetic field is studied. It is shown that at the point of an accidental degeneracy of the two lowest levels above the ground state the Rashba spin-orbit coupling leads to a level anticrossing and to mixing of spin-up and spin-down states, whereas there is no mixing of these levels due to the Dresselhaus term. We calculate the relaxation and decoherence times of the three lowest levels due to phonons. We find that the spin relaxation rate as a function of a magnetic field exhibits a cusp-like structure for Rashba but not for Dresselhaus spin-orbit interaction.Comment: 6 pages, 1 figur

    Anomalous Hall effect in a two-dimensional electron gas with spin-orbit interaction

    Full text link
    We discuss the mechanism of anomalous Hall effect related to the contribution of electron states below the Fermi surface (induced by the Berry phase in momentum space). Our main calculations are made within a model of two-dimensional electron gas with spin-orbit interaction of the Rashba type, taking into account the scattering from impurities. We demonstrate that such an "intrinsic" mechanism can dominate but there is a competition with the impurity-scattering mechanism, related to the contribution of states in the vicinity of Fermi surface. We also show that the contribution to the Hall conductivity from electron states close to the Fermi surface has the intrinsic properties as well.Comment: 9 pages, 6 figure

    Spin-orbit-induced correlations of the local density of states in two-dimensional electron gas

    Full text link
    We study the local density of states (LDOS) of two-dimensional electrons in the presence of spin-orbit (SO) coupling. Although SO coupling has no effect on the average density of states, it manifests itself in the correlations of the LDOS. Namely, the correlation function acquires two satellites centered at energy difference equal to the SO splitting, 2ωSO2\omega_{SO}, of the electron Fermi surface. For a smooth disorder the satellites are well separated from the main peak. Weak Zeeman splitting ωZ≪ωSO\omega_{Z} \ll \omega_{SO} in a parallel magnetic field causes an anomaly in the shape of the satellites. We consider the effect of SO-induced satellites in the LDOS correlations on the shape of the correlation function of resonant-tunneling conductances at different source-drain biases, which can be measured experimentally. This shape is strongly sensitive to the relation between ωSO\omega_{SO} and ωZ\omega_{Z}.Comment: 10 pages, 4 figure

    Observation of exchange Coulomb interactions in the quantum Hall state at nu=3

    Full text link
    Coulomb exchange interactions of electrons in the nu=3 quantum Hall state are determined from two inter-Landau level spin-flip excitations measured by resonant inelastic light scattering. The two coupled collective excitations are linked to inter-Landau level spin-flip transitions arising from the N=0 and N=1 Landau levels. The strong repulsion between the two spin-flip modes in the long-wave limit is clearly manifested in spectra displaying Coulomb exchange contributions that are comparable to the exchange energy for the quantum Hall state at nu=1. Theoretical calculations within the Hartree-Fock approximation are in a good agreement with measured energies of spin-flip collective excitations.Comment: 5 pages, 3 figures, to appear in PRB Rapid Communication

    Resonance-like electrical control of electron spin for microwave measurement

    Full text link
    We demonstrate that the spin-polarized electron current can interact with a microwave electric field in a resonant manner. The spin-orbit interaction gives rise to an effective magnetic field proportional to the electric current. In the presence of both dc and ac electric field components, electron spin resonance occurs if the ac frequency matches with the spin precession frequency that is controlled by the dc field. In a device consisting of two spin-polarized contacts connected by a two-dimensional channel, this mechanism allows electrically tuned detection of the ac signal frequency and amplitude. For GaAs, such detection is effective in the frequency domain around tens of gigahertz.Comment: 10 pages, 2 figure

    Improving Whole Slide Segmentation Through Visual Context - A Systematic Study

    Full text link
    While challenging, the dense segmentation of histology images is a necessary first step to assess changes in tissue architecture and cellular morphology. Although specific convolutional neural network architectures have been applied with great success to the problem, few effectively incorporate visual context information from multiple scales. With this paper, we present a systematic comparison of different architectures to assess how including multi-scale information affects segmentation performance. A publicly available breast cancer and a locally collected prostate cancer datasets are being utilised for this study. The results support our hypothesis that visual context and scale play a crucial role in histology image classification problems

    Absence of weak antilocalization in ferromagnetic films

    Full text link
    We present magnetoresistance measurements performed on ultrathin films of amorphous Ni and Fe. In these films the Curie temperature drops to zero at small thickness, making it possible to study the effect of ferromagnetism on localization. We find that non-ferromagnetic films are characterized by positive magnetoresistance. This is interpreted as resulting from weak antilocalization due to strong Bychkov-Rashba spin orbit scattering. As the films become ferromagnetic the magnetoresistance changes sign and becomes negative. We analyze our data to identify the individual contributions of weak localization, weak antilocalization and anisotropic magnetoresistance and conclude that the magnetic order suppresses the influence of spin-orbit effects on localization phenomena in agreement with theoretical predictions.Comment: 6 pages, 6 figure

    Two-dimensional magnetoexcitons in the presence of spin-orbit coupling

    Full text link
    We study theoretically the effect of spin-orbit coupling on quantum well excitons in a strong magnetic field. We show that, in the presence of an in-plane field component, the excitonic absorption spectrum develops a double-peak structure due to hybridization of bright and dark magnetoexcitons. If the Rashba and Dresselhaus spin-orbit constants are comparable, the magnitude of splitting can be tuned in a wide interval by varying the azimuthal angle of the in-plane field. We also show that the interplay between spin-orbit and Coulomb interactions leads to an anisotropy of exciton energy dispersion in the momentum plane. The results suggest a way for direct optical measurements of spin-orbit parameters.Comment: 9 pages, 6 figure
    • …
    corecore