5,769 research outputs found

    Spin-orbit field switching of magnetization in ferromagnetic films with perpendicular anisotropy

    Full text link
    As an alternative to conventional magnetic field, the effective spin-orbit field in transition metals, derived from the Rashba field experienced by itinerant electrons confined in a spatial inversion asymmetric plane through the s-d exchange interaction, is proposed for the manipulation of magnetization. Magnetization switching in ferromagnetic thin films with perpendicular magnetocrystalline anisotropy can be achieved by current induced spin-orbit field, with small in-plane applied magnetic field. Spin-orbit field induced by current pulses as short as 10 ps can initiate ultrafast magnetization switching effectively, with experimentally achievable current densities. The whole switching process completes in about 100 ps.Comment: 4 pages, 3 figure

    Magnetoplasmons excitations in graphene for filling factors ν6\nu \leq 6

    Full text link
    In the frame of the Hartree-Fock approximation, the dispersion of magnetoplasmons in Graphene is derived for all types of transitions for filling factors ν6\nu\leq 6. The optical conductivity components of the magnetoplasmon curves are calculated. It is shown that the electron-electron interactions lead to a strong re-normalization of the apparent Fermi velocity of Graphene which is different for different types of transitions.Comment: 15 pages, 7 figure

    Double-exciton component of the cyclotron spin-flip mode in a quantum Hall ferromagnet

    Full text link
    We report on the calculation of the cyclotron spin-flip excitation (CSFE) in a spin-polarized quantum Hall system at unit filling. This mode has a double-exciton component which contributes to the CSFE correlation energy but can not be found by means of a mean field approach. The result is compared with available experimental data.Comment: 9 pages, 2 figure

    Robustness of Majorana Modes and Minigaps in a Spin-Orbit-Coupled Semiconductor-Superconductor Heterostructure

    Full text link
    We study the robustness of Majorana zero energy modes and minigaps of quasiparticle excitations in a vortex by numerically solving Bogoliubov-deGennes equations in a heterostructure composed of an \textit{s} -wave superconductor, a spin-orbit-coupled semiconductor thin film, and a magnetic insulator. This heterostructure was proposed recently as a platform for observing non-Abelian statistics and performing topological quantum computation. The dependence of the Majorana zero energy states and the minigaps on various physics parameters (Zeeman field, chemical potential, spin-orbit coupling strength) is characterized. We find the minigaps depend strongly on the spin-orbit coupling strength. In certain parameter region, the minigaps are linearly proportional to the \textit{s}-wave superconducting pairing gap Δs\Delta_{s}, which is very different from the Δs2\Delta_{s}^{2} dependence in a regular \textit{s-} or \textit{\p}-wave superconductor. We characterize the zero energy chiral edge state at the boundary and calculate the STM signal in the vortex core that shows a pronounced zero energy peak. We show that the Majorana zero energy states are robust in the presence of various types of impurities. We find the existence of impurity potential may increase the minigaps and thus benefit topological quantum computation.Comment: 11 pages, 15 figure

    Spin-Orbit Coupling and Tunneling Current in a Parabolic Quantum Dot

    Full text link
    We propose a novel approach to explore the properties of a quantum dot in the presence of the spin-orbit interaction and in a tilted magnetic field. The spin-orbit coupling within the quantum dot manifest itself as anti-crossing of the energy levels when the tilt angle is varied. The anti-crossing gap has a non-monotonic dependence on the magnitude of the magnetic field and exhibits a peak at some finite values of the magnetic field. From the dependence of the tunneling current through the quantum dot on the bias voltage and the tilt angle, the anti-crossing gap and most importantly the spin-orbit strength can be uniquely determined

    Interacting fermions in two dimensions: beyond the perturbation theory

    Full text link
    We consider a system of 2D fermions with short-range interaction. A straightforward perturbation theory is shown to be ill-defined even for an infinitesimally weak interaction, as the perturbative series for the self-energy diverges near the mass shell. We show that the divergences result from the interaction of fermions with the zero-sound collective mode. By re-summing the most divergent diagrams, we obtain a closed form of the self-energy near the mass shell. The spectral function exhibits a threshold feature at the onset of the emission of the zero-sound waves. We also show that the interaction with the zero sound does not affect a non-analytic, T2T^{2}-part of the specific heat.Comment: 5 pages, 4 figure

    About the global magnetic fields of stars

    Full text link
    We present a review of observations of the stellar longitudinal (effective) magnetic field (BeB_e) and its properties. This paper also discusses contemporary views on the origin, evolution and structure of BeB_e.Comment: Plenary report, The Gamov International Astronomical Conference, XIII ODESSA, 19-25 August, 2013, Odessa, Ukrain
    corecore