492 research outputs found

    IMPROVING FEEDBACK ON SWIMMING TURNS AND STARTS EXPONENTIALLY

    Get PDF
    The purpose of this study was to develop an objective method of quantifying velocity and estimating appropriate times of initiating the kick in turns and starts. A mathematical model based on an exponential function was fitted to the glide phase following push off from the wall in turns. The function was then extrapolated through the kicking phase and compared to the actual velocity to assess whether the timing of initiation of the kick was appropriate. It was concluded that this method was useful for analysis of swimmers and for feedback to swimmers and coaches on timing of the kick in turns. The method can also be applied to assess the timing of the kick following entry in a dive start

    Minimum Particle Size for Cyclone Dust Separator

    Get PDF
    Perkins technology wish to separate small soot particles from exhaust gases, and the question posed to the study group was to determine the feasibility of using a cyclone separator to remove these particles. Soot is mostly composed of polycyclicaromatic compounds and results from the incomplete combustion of the diesel fuel in the engine. The average size of the particles formed in the engine is in the range 3 to 10 nm in diameter, but this is known to increase within the exhaust system. In the first part of this report we determine the minimum particle size that can be removed by centrifugal separation. The second part discusses the mechanisms for particle growth within the exhaust system in order to estimate the particle growth rate. In section two we estimate the minimum particle diameter that can be removed by a cyclone separator is around one micron. This estimate is consistent with current applications of hydrocyclones. The particle size measurements by Perkins Technology together with our estimates from section three, suggest that the soot particles are an order of magnitude smaller than this. Although it may be possible to remove some particles less than one micron in diameter with a well designed high-speed cyclone, we do not think it will be possible to remove a substantial proportion of 100 nm or smaller particles. The growth rate of the particles increases if the particles volume fraction or the polydispersity is increased. Therefore aggregation could be enhanced by the addition of larger particles (d > 1 µm) or water droplets (provided the water does not all vapourise) to the exhaust gas

    Human Decompression Modelling

    Get PDF
    At present, no decompression algorithm is able to predict safe decompression for all dive scenarios. In practice, empirical adjustments are made by experienced organisations or divers in order to improve decompression profiles for the range of depths and durations needed on any particular dive. Bubble formation and growth in the human body are the fundamental causes of decompression sickness, and it is believed that there is significant scope for incorporating better modelling of these processes into the design of decompression algorithms. VR Technology is a leading supplier of technical dive computers. The company is interested in expanding upon an existing algorithm (the Variable Gradient Model - VGM), which is used to design ascent profiles/decompression schedules and thereby mitigate the risk of decompression sickness in divers. The Study Group took the approach of trying to extend the existing Haldane model to account more explicitly for the formation of bubbles. By extending the model to include bubble dynamics it was expected that some physical understanding could be gained for the existing modifications to some of the parameters. The modelling that occurred consisted of first looking at the Haldane model and then considering a single small isolated bubble in each of the compartments and interpreting the predictions of the model in terms of decompression profiles

    Homeless population

    Get PDF
    The aim was to derive and analyze a model for numbers of homeless and non-homeless people in a borough, in particular to see how these figures might be affected by different policies regarding housing various categories of people. Most attention was focused on steady populations although the stability of these and possible timescales of dynamic problems were also discussed. The main outcome of this brief study is the identification of the key role played by the constant k_1 - the constant which fixes the speed at which the homeless are rehoused in permanent council property. Reducing this constant, i.e. making the system "fairer" with less priority to accommodating homeless families, appears to have little effect on the sizes of other categories on the waiting list but there is a marked increase in the number of households in temporary accommodation. The model, indicated by the size of its longest time-scale, should be modified to allow for births etc. It could be varied by allowing people to remove themselves from the register or by allowing the rates at which registered and unregistered people become homeless to differ, but these modifications are unlikely to substantially change the main result. The inclusion of movement from the homeless to the general population would have the effect of limiting the numbers in temporary accommodation. However, it is thought this effect is very small so a great reduction in k_1 would be needed for this flow to become significant

    Freeze protection in gasholders

    Get PDF
    In cold weather, the water seals of gasholders need protection from freezing to avoid compromising the seal. These holders have a large reservoir of "tank water" at the base which is below ground. At present freeze-protection is achieved by external heating of the seal water which is in a slotted channel called a cup. Electrical heating or circulation of heated tank water to the cup are examples of systems presently used. The tank water has a large thermal capacity and National Grid wishes to investigate whether circulation of the tank water without external heating could provide sufficient energy input to avoid freezing. Only tanks in which the tank water is below ground are investigated in the report. The soil temperature under the reservoir at depth of 10m and lower is almost constant

    Sexual selection, automata and ethics in George Eliot's The Mill on the Floss and Olive Schreiner's Undine and From Man to Man

    Get PDF
    This paper brings together two related areas of debate in the latter half of the nineteenth century. The first concerns how the courtship plot of the nineteenth-century novel responded to, and helped to shape, scientific ideas of sexual competition and selection. In The Mill on the Floss (1860), George Eliot strikingly prefigures Darwin's later work on sexual selection, drawing from her own extensive knowledge of the wider debates within which evolutionary theory developed. Maggie Tulliver's characterisation allows Eliot to explore the ethical complexities raised by an increasingly powerful scientific naturalism, where biology is seen to be embedded within morality in newly specific ways. The second strand of the paper examines the extension of scientific method to human mind and motivation which constituted the new psychology. It argues that there are crucial continuities of long-established ethical and religious ideas within this increasingly naturalistic view of human mind and motivation. The contention that such ideas persist and are transformed, rather than simply jettisoned, is illustrated through the example of Thomas Henry Huxley's 1874 essay on automata. Turning finally to focus on Olive Schreiner's Undine (1929) and From Man to Man (1926), the paper explores the importance of these persistent ethical and religious ideas in two novels which remained unpublished during her lifetime. It argues that they produce both difficulty and opportunity for imagining love plots within the context of increasingly assertive biological and naturalistic accounts of human beings

    Visco-potential free-surface flows and long wave modelling

    Get PDF
    In a recent study [DutykhDias2007] we presented a novel visco-potential free surface flows formulation. The governing equations contain local and nonlocal dissipative terms. From physical point of view, local dissipation terms come from molecular viscosity but in practical computations, rather eddy viscosity should be used. On the other hand, nonlocal dissipative term represents a correction due to the presence of a bottom boundary layer. Using the standard procedure of Boussinesq equations derivation, we come to nonlocal long wave equations. In this article we analyse dispersion relation properties of proposed models. The effect of nonlocal term on solitary and linear progressive waves attenuation is investigated. Finally, we present some computations with viscous Boussinesq equations solved by a Fourier type spectral method.Comment: 29 pages, 13 figures. Some figures were updated. Revised version for European Journal of Mechanics B/Fluids. Other author's papers can be downloaded from http://www.lama.univ-savoie.fr/~dutyk

    Reaction-diffusion models of decontamination

    Get PDF
    A contaminant, which also contains a polymer is in the form of droplets on a solid surface. It is to be removed by the action of a decontaminant, which is applied in aqueous solution. The contaminant is only sparingly soluble in water, so the reaction mechanism is that it slowly dissolves in the aqueous solution and then is oxidized by the decontaminant. The polymer is insoluble in water, and so builds up near the interface, where its presence can impede the transport of contaminant. In these circumstances, Dstl wish to have mathematical models that give an understanding of the process, and can be used to choose the parameters to give adequate removal of the contaminant. Mathematical models of this have been developed and analysed, and show results in broad agreement with the effects seen in experiments
    • …
    corecore