140 research outputs found

    Nowcasting wind using machine learning from the stations to the grid

    Get PDF
    Presentación realizada en la 3rd European Nowcasting Conference, celebrada en la sede central de AEMET en Madrid del 24 al 26 de abril de 2019

    Experiences in using INCA-CH precipitation nowcasting for Urban Flood Nowcasting

    Get PDF
    Presentación realizada en la 3rd European Nowcasting Conference, celebrada en la sede central de AEMET en Madrid del 24 al 26 de abril de 2019

    A Superconducting Nanowire Binary Shift Register

    Full text link
    We present a design for a superconducting nanowire binary shift register, which stores digital states in the form of circulating supercurrents in high-kinetic-inductance loops. Adjacent superconducting loops are connected with nanocryotrons, three terminal electrothermal switches, and fed with an alternating two-phase clock to synchronously transfer the digital state between the loops. A two-loop serial-input shift register was fabricated with thin-film NbN and achieved a bit error rate less than 10410^{-4}, operating at a maximum clock frequency of 83MHz83\,\mathrm{MHz} and in an out-of-plane magnetic field up to 6mT6\,\mathrm{mT}. A shift register based on this technology offers an integrated solution for low-power readout of superconducting nanowire single photon detector arrays, and is capable of interfacing directly with room-temperature electronics and operating unshielded in high magnetic field environments.Comment: The following article has been published in Applied Physics Letters issue 122. 10 pages, 3 figure

    A Nanocryotron Memory and Logic Family

    Full text link
    The development of superconducting electronics based on nanocryotrons has been limited so far to few-device circuits, in part due to the lack of standard and robust logic cells. Here, we introduce and experimentally demonstrate designs for a set of nanocryotron-based building blocks that can be configured and combined to implement memory and logic functions. The devices were fabricated by patterning a single superconducting layer of niobium nitride and measured in liquid helium on a wide range of operating points. The tests show 10410^{-4} bit error rates with above 20%20\,\% margins up to 5050\,MHz and the possibility of operating under the effect of a perpendicular 3636\,mT magnetic field, with 30%30\,\% margins at 1010\,MHz. Additionally, we designed and measured an equivalent delay flip-flop made of two memory cells to show the possibility of combining multiple building blocks to make larger circuits. These blocks may constitute a solid foundation for the development of nanocryotron logic circuits and finite-state machines with potential applications in the integrated processing and control of superconducting nanowire single-photon detectors.Comment: Submitted for publication in the Applied Physics Letters special issue "Advances in Superconducting Logic", 8 pages, 5 figure

    Conference Report 2nd European Nowcasting Conference

    Get PDF
    The 2nd European Nowcasting Conference took place in Offenbach, Germany, on 3–5 May 2017. The conference was structured into four thematic sessions i) observations as basis for nowcasting, ii) nowcasting techniques and systems, iii) application, user aspects and verification, and iv) combination of numerical weather prediction and nowcasting. This report summarises the scientific contributions presented and the open scientific questions discussed at the conference

    A Nanocryotron Ripple Counter Integrated with a Superconducting Nanowire Single-Photon Detector for Megapixel Arrays

    Full text link
    Decreasing the number of cables that bring heat into the cryocooler is a critical issue for all cryoelectronic devices. Especially, arrays of superconducting nanowire single-photon detectors (SNSPDs) could require more than 10610^6 readout lines. Performing signal processing operations at low temperatures could be a solution. Nanocryotrons, superconducting nanowire three-terminal devices, are good candidates for integrating sensing and electronics on the same technological platform as SNSPDs in photon-counting applications. In this work, we demonstrated that it is possible to read out, process, encode, and store the output of SNSPDs using exclusively superconducting nanowires. In particular, we present the design and development of a nanocryotron ripple counter that detects input voltage spikes and converts the number of pulses to an NN-digit value. The counting base can be tuned from 2 to higher values, enabling higher maximum counts without enlarging the circuit. As a proof-of-principle, we first experimentally demonstrated the building block of the counter, an integer-NN frequency divider with NN ranging from 2 to 5. Then, we demonstrated photon-counting operations at 405\,nm and 1550\,nm by coupling an SNSPD with a 2-digit nanocryotron counter partially integrated on-chip. The 2-digit counter operated in either base 2 or base 3 with a bit error rate lower than 2×1042 \times 10^{-4} and a maximum count rate of 45×10645 \times 10^6\,s1^{-1}. We simulated circuit architectures for integrated readout of the counter state, and we evaluated the capabilities of reading out an SNSPD megapixel array that would collect up to 101210^{12} counts per second. The results of this work, combined with our recent publications on a nanocryotron shift register and logic gates, pave the way for the development of nanocryotron processors, from which multiple superconducting platforms may benefit

    Magnolia officinalis L. bark extract and respiratory diseases: From traditional Chinese medicine to western medicine via network target

    Get PDF
    The understanding of the use of Magnolia officinalis L. (Magnoliaceae) as a possible dietary supplement for supporting the treatment of airway pathologies might be of clinical interest. Two commercially available bark extracts (M. officinalis extract [MOE]) were characterized by quantitation in honokiol and magnolol content by means of high-performance liquid chromatography with UV detection. MOE effects, as well as those of the reference compounds per se, on some targets connected to airway pathologies (antibacterial- and lung and trachea relaxing- activities) were investigated. Results showed that MOE possessed interesting antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pneumoniae. This was accompanied by a spasmolytic and antispasmodic activity, possibly owing to its ability to concurrently modulate different targets such as H-1-, beta(2)- and muscarinic receptors and l-type calcium channels involved in bronchodilation. All these effects were directly related to the MOE content in honokiol and magnolol. In conclusion, the properties of MOE highlighted here strongly encourage its application as dietary supplement in the treatment of airway diseases

    Conference Report: Fourth European Nowcasting Conference

    Get PDF
    The fourth European Nowcasting Conference took place as an online event from 21 to 24 March 2022, organized by the EUMETNET (European National Meteorological and Hydrological Services Network) Nowcasting Program (E-NWC), and kindly supported by EUMETCAL (EUMETNET Education and Training Collaborative Network of the National Meteorological Services within Europe). More than 110 participants attended the conference. 46 conference’s presentations were given within the 0) opening session, a session on 1) observation as a basis for nowcasting, 2) seamless prediction with a special focus on Artificial Intelligence (AI), 3) nowcasting systems, products, and techniques and 4) verification, impacts on society, as well as applications and aspects of users. This report summarizes the scientific contributions presented and the discussed scientific questions
    corecore