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Motivation: INCA-CH seamless Nowcasting System

Current INCA-CH system for mean wind

• Analysis: 

• COSMO-1 error interpolated in space 

using inverse distance weighting 

(horizontal and vertical).

• leave one out cross-validation: equivalent 

or sometimes even worse performance as 

COSMO-1.

• Forecast:

• Linear blending  between analysis and 

COSMO-1 (0-6h): unrealistic transitions.

INCA-CH

CV

Goal: evaluate machine learning techniques

• Improve analysis and nowcasting of the model on the whole grid

• Add wind gust
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Project flowchart
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Dataset description: observation

• Hourly mean wind, wind gusts

• 10.2017 and 12.2018

• Instruments at 10 m from the ground

• Switzerland

• SMN

• IMIS (SLF)

• Private network, Cantonal network 

• France (FR), Italy (IY), Germany (DL), 

Austria (OS)

• Data quality check: removed suspicious 

stations 
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Dataset description: predictors

• COSMO-1 variables:

- Hourly mean wind, gust, u, v

- Pressure

- Boundary layer height

- Relative humidity

- …

• Seasonality parameters:

- Hour and Day of the year

• Topographical parameters (resolutions 15 km – 100 m):

- Altitude

- Slope

- Aspect

- Directional derivatives

- Topographic Position Index

- Maximum slope dependent on wind direction
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Dataset description: topographical predictors

DEM E-W derivative N-S derivative

Slope Aspect TPI
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Winstral et al. (2016)
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Machine learning model for stations
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Model for stations

Feedforward Artificial Neural Network:

• Multi-layer perceptron

• Number of observations > 1 billion (365 days)

• 38 predictors (10 COSMO-1, 4 seasonality, 20 topographical, 4 

observations)

• 2 hidden layers with (200,100) neurons

• Loss function: Mean Squared Error

• 5-fold cross-validation with grid-search for hyperparameter tuning

• Early-stopping to avoid overfitting

• Test independent in TIME

• Training: 10.2017-09.2018 (30 % for validation); Test: 09.2018 –

12.2018

• Feature importance from Random Forest

Learning curve:
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Results at stations: mean wind performance
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2 steps model for the whole grid
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Model on the grid: step 1

Generic model trained on 1 year of data

• Correction of the systematic error

• Trained not only on independent period of time, but also on independent 

stations (unknown points, 20-fold cross-validation)

• Trying to keep the same performance at stations included and not included 

(grid), avoiding overfitting

• Loss function: Logarithm of the hyperbolic cosine of the prediction error

• log cosh 𝑥 ≅  
𝑥2 𝑓𝑜𝑟 𝑠𝑚𝑎𝑙𝑙 𝑥

𝑎𝑏𝑠 𝑥 − log 2 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑥

• Mostly like MSE, but less affected by the occasional wildly incorrect 

prediction

• The validation curve shows the same performance on known and unknown 

points, early-stopping to avoid overfitting at stations

Validation curve

Unknown points: 

performance on 

the grid
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Results step 1: mean wind performance
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Results step 2: mean wind

• Prediction values limited for

Random forest

• Better at stations but cross

validation doesn’t improve

consistently: 

• RMSE LR at stations = 1.62

• RMSE RF at stations = 1.40

• LR improves the dispersion, 

distribution closer to observations

Step 2 RFStep 2 LR COSMO-1Step 1
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Results step 2: wind gust
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Model at stations

• 1 unique ML model leads to a strong improvement for all lead-times (0-24h).

• Persistence of wind is very important for nowcasting.

Model on the grid

• Machine learning for wind on locations without measurements remains a very difficult task in the Alpine region.

• Multi-step approach aims to correct systematic and forecasting errors on the whole grid.

• The efficacy of step 2 is evident for wind gusts, less significant for mean wind.

Possible improvements

• Step 1: data size vs performance (learning curve)

• Step 1: further optimisation of the Neural Network

• Step 1: convolutional Neural Networks (better representativeness of topographical parameters) or/and more realistic 

ground model (accounting for buildings and vegetation)

• Step 2: increase the number of high quality stations, try to give more importance to coordinates

Future work

• Implementation of the model in real time and evaluate performance

Summary and Outlook
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Thanks for the attention!
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Results step 2: mean wind


