74 research outputs found

    A comparison of macroscopic lipid content within porcine pulmonary and aortic valves: Implications for bioprosthetic valves

    Get PDF
    AbstractLipid droplets have been demonstrated within both explanted porcine bioprostheses and normal porcine aortic valves. Because of the increasing interest in pulmonary valves as an allograft or xenograft aortic valve substitute, we examined the incidence and distribution of such lipid deposits in 50 porcine aortic valves and 50 matched porcine pulmonary valves. All 300 cusps were removed with surgical scissors and, under a dissecting microscope, the ventricularis layer was removed to expose the spongiosal layer. Macroscopic extracellular lipid droplets were exposed. The position and amount of the visible unstained droplets were analyzed by means of a dissecting microscope with an eyepiece grid and stereology point-counting techniques to provide an area-density average spatial probability map for each cusp. Only 8% of porcine aortic valves were free of lipid, with the distribution of the lipids being 52% ± 14% right coronary cusp, 90% ± 8% left coronary cusp, and 68% ± 13% noncoronary cusp. Of the pulmonary valves, 60% were free of lipid, with the incidence of lipids being 26% ± 12% left cusp, 6% ± 7% right cusp, and 12% ± 9% anterior cusp. Subsequently, lipid cluster samples underwent thin-layer chromatography, which showed them to be phospholipids, oleic acid (fatty acid), triglycerides, and unesterified cholesterol. One primary mode of bioprosthetic valve failure is leaflet calcification. The similarity of distribution within the spongiosal layer between leaflet calcification and intrinsic cusp lipids suggests that the observed lipids might act as a nucleation site for calcification. The substantially lower incidence of lipid in pulmonary valves therefore may represent a potential benefit when these valves are considered for use as aortic valve replacements. (J THORAC CARDIOVASC SURG 1995;110:1756-61

    Dual-energy computed tomography using a gantry-based preclinical cone-beam microcomputed tomography scanner

    Get PDF
    © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. Dual-energy microcomputed tomography (DECT) can provide quantitative information about specific materials of interest, facilitating automated segmentation, and visualization of complex three-dimensional tissues. It is possible to implement DECT on currently available preclinical gantry-based cone-beam micro-CT scanners; however, optimal decomposition image quality requires customized spectral shaping (through added filtration), optimized acquisition protocols, and elimination of misregistration artifacts. We present a method for the fabrication of customized x-ray filters - in both shape and elemental composition - needed for spectral shaping. Fiducial markers, integrated within the sample holder, were used to ensure accurate co-registration between sequential low- and high-energy image volumes. The entire acquisition process was automated through the use of a motorized filter-exchange mechanism. We describe the design, implementation, and evaluation of a DECT system on a gantry-based-preclinical cone-beam micro-CT scanner

    Erbium-Based Perfusion Contrast Agent for Small-Animal Microvessel Imaging

    Get PDF
    Micro-computed tomography (micro-CT) facilitates the visualization and quantification of contrast-enhanced microvessels within intact tissue specimens, but conventional preclinical vascular contrast agents may be inadequate near dense tissue (such as bone). Typical lead-based contrast agents do not exhibit optimal X-ray absorption properties when used with X-ray tube potentials below 90 kilo-electron volts (keV). We have developed a high-atomic number lanthanide (erbium) contrast agent, with a K-edge at 57.5 keV. This approach optimizes X-ray absorption in the output spectral band of conventional microfocal spot X-ray tubes. Erbium oxide nanoparticles (nominal diameter \u3c 50 nm) suspended in a two-part silicone elastomer produce a perfusable fluid with viscosity of 19.2 mPa-s. Ultrasonic cavitation was used to reduce aggregate sizes to 4000 Hounsfield units, and perfusion of vessels \u3c 10  μ m in diameter was demonstrated in kidney glomeruli. The described new contrast agent facilitated the visualization and quantification of vessel density and microarchitecture, even adjacent to dense bone. Erbium’s K-edge makes this contrast agent ideally suited for both single- and dual-energy micro-CT, expanding potential preclinical research applications in models of musculoskeletal, oncological, cardiovascular, and neurovascular diseases

    Erbium-Based Perfusion Contrast Agent for Small-Animal Microvessel Imaging

    Get PDF
    Micro-computed tomography (micro-CT) facilitates the visualization and quantification of contrast-enhanced microvessels within intact tissue specimens, but conventional preclinical vascular contrast agents may be inadequate near dense tissue (such as bone). Typical lead-based contrast agents do not exhibit optimal X-ray absorption properties when used with X-ray tube potentials below 90 kilo-electron volts (keV). We have developed a high-atomic number lanthanide (erbium) contrast agent, with a K-edge at 57.5 keV. This approach optimizes X-ray absorption in the output spectral band of conventional microfocal spot X-ray tubes. Erbium oxide nanoparticles (nominal diameter \u3c 50 nm) suspended in a two-part silicone elastomer produce a perfusable fluid with viscosity of 19.2 mPa-s. Ultrasonic cavitation was used to reduce aggregate sizes to 4000 Hounsfield units, and perfusion of vessels \u3c 10  μ m in diameter was demonstrated in kidney glomeruli. The described new contrast agent facilitated the visualization and quantification of vessel density and microarchitecture, even adjacent to dense bone. Erbium’s K-edge makes this contrast agent ideally suited for both single- and dual-energy micro-CT, expanding potential preclinical research applications in models of musculoskeletal, oncological, cardiovascular, and neurovascular diseases

    Corrigendum to: Erbium-based perfusion contrast agent for small-animal microvessel imaging (Contrast Media and Molecular Imaging (2017) 2017 (7368384) DOI: 10.1155/2017/7368384)

    Get PDF
    Copyright © 2018 Justin J. Tse et al. In the article titled Erbium-Based Perfusion Contrast Agent for Small-Animal Microvessel Imaging [1], there were errors in the scale bars in Figure 3, which should be corrected as follows: (Figure Presented)
    • …
    corecore