27 research outputs found

    Anomalies Observed in VLF and LF Radio Signals on the Occasion of the Western Turkey Earthquake (Mw = 5.7) on May 19, 2011

    Get PDF
    VLF radio signals lie in the 10 - 60 kHz frequency band. These radio signals are used for worldwide navigation support, time signals and for military purposes. They are propagated in the earth-ionosphere wave-guide mode along great circle propagation paths. So, their propaga-tion is strongly affected by the ionosphere conditions. LF signals lie in 150 - 300 kHz frequency band. They are used for long way broadcasting by the few (this type of broadcasting is going into disuse) transmitters located in the world. These radio signals are characterized by the ground wave and the sky wave propagation modes [1]. The first generates a stable signal that propagates in the channel Earth-troposphere and is affected by the surface ground and troposphere condition. The second instead gives rise to a signal which varies greatly between day and night, and between summer and winter, and which propagates using the lower ionosphere as a reflector; its propagation is mainly affected by the ionosphere condi-tion, particularly in the zone located in the middle of the transmitter-receiver path. The propagation of the VLF/LF radio signals is affected by different factors such as the meteorological condition, the solar bursts and the geo-magnetic activity. At the same time, variations of some parameters in the ground, in the atmosphere and in the ionosphere occurring during the preparatory phase of earthquakes can produce disturbances in the above men-tioned signals. As already reported by many previous studies [2-18] the disturbances are classified as anoma-lies and different methods of analysis as the residual dA/ dP [15], the terminator time TT [9], the Wavelet spectra and the Principal Component Analysis have been used [6,7]. Here the analysis carried out on LF and VLF radio signals using three different methods on the occasion of a strong earthquake occurred recently in Turkey is pre-sented

    Wavelet analysis of the LF radio signals collected by the European VLF/LF network from July 2009 to April 2011

    Get PDF
    In 2008, a radio receiver that works in very low frequency (VLF; 20-60 kHz) and LF (150-300 kHz) bands was developed by an Italian factory. The receiver can monitor 10 frequencies distributed in these bands, with the measurement for each of them of the electric field intensity. Since 2009, to date, six of these radio receivers have been installed throughout Europe to establish a ‘European VLF/LF Network’. At present, two of these are into operation in Italy, and the remaining four are located in Greece, Turkey, Portugal and Romania. For the present study, the LF radio data collected over about two years were analysed. At first, the day-time data and the night-time data were separated for each radio signal. Taking into account that the LF signals are characterized by ground-wave and sky-wave propagation modes, the day-time data are related to the ground wave and the night-time data to the sky wave. In this framework, the effects of solar activity and storm activity were defined in the different trends. Then, the earthquakes with M ≥5.0 that occurred over the same period were selected, as those located in a 300-km radius around each receiver/transmitter and within the 5th Fresnel zone related to each transmitter-receiver path. Where possible, the wavelet analysis was applied on the time series of the radio signal intensity, and some anomalies related to previous earthquakes were revealed. Except for some doubt in one case, success appears to have been obtained in all of the cases related to the 300 km circles in for the ground waves and the sky waves. For the Fresnel cases, success in two cases and one failure were seen in analysing the sky waves. The failure occurred in August/September, and might be related to the disturbed conditions of the ionosphere in summer

    Present status and preliminary results of the VLF/LF radio recording European network installed in 2009.

    Get PDF
    In January 2009 a European network of receivers able to measure the electric field intensity from various VLF/LF broadcasting stations located throughout Europe, was installed. Five new receivers constructed by an Italian enterprise have been delivered to Greece, Romania, Turkey and to the Italian team. The motivation of this effort is to study the possible connections between the preparatory phase of earthquakes and perturbations in the transmitted radio signals. The receivers can be reached via ftp and gsm mobile connection, thus allowing a real time data collection. We present here the status of the network and the various testing steps performed in order to achieve a correct set up. We show how antennas variations, receivers locations and changes of selected frequencies affect the performances of the whole network. After this necessary testing period, several LF/VLF radio signals are now simultaneously and continuously being sampled by the five receivers. As a preliminary result we inspect also specific cases in which an anomaly in the radio signals is clearly related to the transmitter or to the receiver (e.g. meteorological conditions around the sampling site). At a basic level, the analysis adopted consists in a simple statistical evaluation of the signals by comparing the instantaneous values to the trend of the signal

    The European VLF/LF radio network to search for earthquake precursors: setting up and natural/man-made disturbances

    Get PDF
    In the last years disturbances in VLF/LF radio signals related to seismic activity have been presented. The radio data were collected by receivers located on the ground or on satellites. The ground-based research implies systematic data collection by a network of receivers. Since 2000 the “Pacific VLF network”, conducted by Japanese researchers, has been in operation. During 2008 a radio receiver was developed by the Italian factory Elettronika (Palo del Colle, Bari). The receiver is equipment working in VLF and LF bands. It can monitor 10 frequencies distributed in these bands and, for each of them, it saves the power level. At the beginning of 2009, five receivers were made for the realization of the “European VLF/LF Network”; two were planned for Italy and one for Greece, Turkey and Romania, respectively. In 2010 the network was enlarged to include a new receiver installed in Portugal. In this work, first the receiver and its setting up in the different places are described. Then, several disturbances in the radio signals related to the transmitters, receivers, meteorological/geomagnetic conditions are presented and described

    The European Network for studying the radio precursors of earthquakes: Principal Component Analysis of LF radio signals collected during July 2009 - April 2011

    Get PDF
    Since 2009 a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers was put into operation in Europe in order to study the disturbances produced by the earthquakes on the propagation of these signals. In 2011 the network for LF signals was formed by six receivers located two in Italy and one in Greece, Portugal, Romania, and Turkey. The LF radio data collected during about two years have been analysed. Each radio signal has been split in day-time and night-time data; then, the earthquakes with M 5.0, occurred in the same period, located in a 300 km radius around each receiver/transmitter and within the 5th Fresnel zone related to each transmitter-receiver path, have been selected. In this study we adopt the Principal Component Analysis (PCA) to study the radio signal anomalies possibly related to earthquake activity. A detailed comparison with similar studies that use wavelet analysis is done and advantages or drawback of the two methods are pointed out

    The European Network for studying the radio precursors of earthquakes: the case of the May 19, 2011 Turkey earthquake (Mw=5.7)

    Get PDF
    Since 2009 a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers was put into operation in Europe in order to study the disturbances produced by the earthquakes on the propagation of these signals. In 2011 the network was formed by nine receivers located three in Italy and one in Austria, Greece, Portugal, Romania, Russia and Turkey. On May 19, 2001 an earthquake with Mw=5.7 occurred in western Turkey, that is inside the “sensitive” area of the network. The radio data collected during April-May 2011 were studied using three different methods of analysis which are the wavelet spectra, the principal component technique and the standard deviation trends. Clear anomalies were revealed both in the signals broadcasted by the TRT transmitter (180 kHz) located near Ankara and in some VLF signals coming from transmitters located in western Europe and collected by the receiver TUR of the network located in eastern Turkey. Evident precursors phases were pointed out. Some difference in the efficiency of the methods of analysis were revealed

    IDENTIFICATION OF BURIED ARCHAEOLOGICAL RELICS USING DERIVATIVES OF MAGNETIC ANOMALIES IN OLYMPOS MOUNTAIN WEST ANATOLIA: A CASE STUDY

    No full text
    Nif (Olympos) Mountain is a wide archaeological site in west Anatolia (Turkey). Surface investigations and excavations have been done in the area since 12 years. The magnetic method as a geophysical prospection method was applied on an area of 500 m2. This method was chosen because such a prospecting technique provides a great amount of high-resolution magnetic data in a very short time. A correlation could be made between the derivative methods used in this study. Analytic signal (AS) method revealed not only grave but also surrounding stones. The total derivative method could not separate stones and grave. Normalised Standard Total Derivation (NSTD) method gave similar results with AS

    The European VLF/LF Radio Network: Advances and Recent Results

    Get PDF
    Since 2009 a network of VLF (20-60 kHz) and LF (150-300 kHz) radio receivers has been put into operation in Europe in order to study earthquakes precursors. At the moment the network consists of ten receivers three of which are located in Italy, two in Greece and one in Portugal, Romania, Malta, Cyprus and Turkey. The data (sampling rate of 1min) are downloaded automatically at the end of each day and are collected at the Department of Physics of the University of Bari (Italy) that is the central node of the network. A detailed study of the radio data collected in the radio network from July 2009 to September 2011 was performed, using different methods of analysis. In total 27 cases suitable for analyzing were found and successes, i.e. radio anomalies preceding the subsequent earthquake (Mw 5.0) and clearly related to the event, were obtained in 70% of the cases; but increasing the value of the Mw threshold for the earthquakes this percentage seems to increase. Among the different methods of analysis the Wavelet spectra appear to be the most sensitive ones. At the moment a system able to apply on the radio data the Wavelet analysis automatically at the end of each day is being developed. On May 20, 2012 an earthquake with Mw=6.1 occurred in north Italy (Emilia region); the epicenter is located inside the “sensitive” area of the network. The results obtained in such occasion are presented

    Analysis of the LF data collected by the European radio network during one year

    No full text
    During 2008 a radio receiver was developed by the Italian factory Elettronika. The receiver is an equipment working in VLF (15-60 kHz) and LF (150-300 kHz) bands. It can monitor 10 frequencies distributed in these bands and, for each of them, saves the electric field intensity. During 2009 six receivers were installed for the realization of the “European VLF/LF network”. Actually, two of them are into operation in Italy and one in Greece, Turkey, Portugal and Romania, respectively; a sampling rate of 1 minute is used. The LF radio data collected from July 2009 to December 2010 have been analysed. At first, for each radio signal, the day time data and the night time ones were separated. Taking into account that the LF signals are characterized by the ground wave and the sky wave propagation modes, the day data are related to the ground wave and the night data to the sky wave. In a first analysis the effect of the solar activity and of the thunderstorm activity was pointed out in the different trends. Then the wavelet analysis was applied on the same trends. Some anomalies probably related to earthquakes occurred nearby some transmitter-receiver path with M>5 were revealed
    corecore