4 research outputs found

    Large-volume optical coherence tomography with real-time correction of geometric distortion artifacts

    No full text
    Large-volume optical coherence tomography (OCT)-setups employ scanning mirrors and suffer from non-linear geometric distortion artifacts in which the degree of distortion is determined by the maximum angles over which the mirrors rotate. In this chapter, we describe a straightforward approach to correct for these distortion artifacts, creating an alternative to previously reported ray-tracing schemes that are unable to apply these corrections in real-time. By implementing the proposed 3D recalibration algorithm on the graphics card of a standard computer, this feature can be applied in real-time. We validate the accuracy of the technique using OCT measurements of a highly curved object within a large imaging volume of 12.35 x 10.13 x 2.36 mm3. The resulting 3D object shape measurements are compared against high-resolution and aberration-free optical profilometry measurements. Maintaining an optical resolution of <10μm within the sample, both axially and transversally, we realized a real-time, high-resolution, largevolume OCT imaging system, capable of producing distortion corrected wide-field OCT data with a geometric surface shape accuracy of <15μm. © 2013 Nova Science Publishers, Inc. All rights reserved

    Real-time correction of geometric distortion artefacts in large-volume optical coherence tomography

    No full text
    Large-volume optical coherence tomography (OCT) setups employ scanning mirrors and suffer from geometric distortion artefacts in which the degree of distortion is determined by the maximum angles over which the mirrors rotate. In this note, we describe a straightforward coordinate transformation scheme to correct for these artefacts in three dimensions, creating an alternative to previously reported ray-tracing schemes. We demonstrate that this recalibration procedure can be applied in real time by implementing the proposed algorithm on the graphics card of a standard computer, making it useful for topography applications. The accuracy of the proposed calibration procedure is validated over an imaging volume of 12.35x10.13x2.36 mm3 using optical moire measurements of a highly curved object. © 2013 IOP Publishing Ltd

    Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography

    No full text
    The full-field thickness distribution, three-dimensional surface model and general morphological data of six human tympanic membranes are presented. Cross-sectional images were taken perpendicular through the membranes using a high-resolution optical coherence tomography setup. Five normal membranes and one membrane containing a pathological site are included in this study. The thickness varies strongly across each membrane, and a great deal of inter-specimen variability can be seen in the measurement results, though all membranes show similar features in their respective relative thickness distributions. Mean thickness values across the pars tensa ranged between 79 and 97 μm; all membranes were thinnest in the central region between umbo and annular ring (50-70 μm), and thickness increased steeply over a small distance to approximately 100-120 μm when moving from the central region either towards the peripheral rim of the pars tensa or towards the manubrium. Furthermore, a local thickening was noticed in the antero-inferior quadrant of the membranes, and a strong linear correlation was observed between inferior-posterior length and mean thickness of the membrane. These features were combined into a single three-dimensional model to form an averaged representation of the human tympanic membrane. 3D reconstruction of the pathological tympanic membrane shows a structural atrophy with retraction pocket in the inferior portion of the pars tensa. The change of form at the pathological site of the membrane corresponds well with the decreased thickness values that can be measured there. © 2013 Association for Research in Otolaryngology

    Recuperação da topografia de ovos por meio da técnica de moiré e calibração independente Eggs' topography recovery by means of the moiré technique and by an independent calibration

    No full text
    A recuperação da topografia de ovos por meio de análise de imagens digitais permite, de forma não destrutiva, a estimativa das massas da gema, da clara, da casca e totais, que são produtos amplamente utilizados na esfera industrial. O presente trabalho buscou desenvolver uma metodologia para a recuperação da forma tridimensional de ovos por meio de análise de imagens, em especial usando a técnica de moiré. Foram utilizados ovos de diferentes tamanhos, classificados em: XL (mais de 73 g), L (63 a 73 g), M (53 a 63 g) e S (até 53 g). Em cada teste realizado em laboratório, um ovo, aleatoriamente selecionado, foi iluminado com a projeção de grades, e as imagens foram capturadas e processadas para a obtenção da forma tridimensional do objeto pela técnica de moiré (TM). As dimensões dos seus eixos principais foram medidas por meio de um paquímetro, sendo usadas como referência para calibração da TM. Equações empíricas foram ajustadas para a correção das dimensões, apresentando coeficiente de determinação de 0,961; 0,955 e 0,988. A TM mostrou-se adequada para a recuperação da topografia de ovos, proporcionando erros menores ou iguais a 5,47%, com a clara necessidade de uma calibração independente, nas três dimensões, e sem a necessidade de usar um objeto calibrador.<br>The recovery of the topography of eggs using digital images analysis allows the prediction with a non-destructive and with a non-contact way of the egg mass, yolk, egg white, and eggshell, which are products widely used in the industrial sphere. The present research seeks to develop a methodology to recovery the tridimensional shape of eggs through image analysis, in particular by the moiré technique with the proposition of an independent calibration. For the accomplishment of this research, eggs of different sizes classified in XL (more than 73g), L (63 to 73g), M (53 to 63 g), and S (until 53 g) were used. In each test realized at the laboratory, one egg, randomly selected was illuminated with the projection of grids and the images were taken and processed to obtain the tridimensional shape of the object by moiré technique (TM). The dimensions of its main axes were measured by means of a caliper rule, being used as a reference for the TM calibration. Empirical equations were adjusted for the correction of the dimensions, presenting coefficient of determination of 0.961, 0.955, and 0.988. TM showed to be adequate for recovering the egg topography providing errors smaller or equal to 5.47%, with a clear demand of an independent calibration in the three dimensions, and without any standard object
    corecore