7 research outputs found
Study of Falling Roof Vibrations in a Production Face at Roof Support Resistance in the Form of Concentrated Force
One of the main reasons of roof support failures in production faces is mismatch of their parameters and parameters of dynamic impact on the metal structure from the falling roof during its secondary convergences. To assess the parameters of vibrational interaction of roof support with the roof, it was suggested to use computational models of forces application and a partial differential equation of fourth order describing this process, its numerical solution allowed to assess frequency, amplitude and speed of roof strata movement depending on physical and mechanical properties of the roof strata as well as on load bearing and geometry parameters of the roof support. To simplify solving of the differential equation, roof support response was taken as the concentrated force
Study of Falling Roof Vibrations in a Production Face at Roof Support Resistance in the Form of Concentrated Force
One of the main reasons of roof support failures in production faces is mismatch of their parameters and parameters of dynamic impact on the metal structure from the falling roof during its secondary convergences. To assess the parameters of vibrational interaction of roof support with the roof, it was suggested to use computational models of forces application and a partial differential equation of fourth order describing this process, its numerical solution allowed to assess frequency, amplitude and speed of roof strata movement depending on physical and mechanical properties of the roof strata as well as on load bearing and geometry parameters of the roof support. To simplify solving of the differential equation, roof support response was taken as the concentrated force
Radial deformations of working cylinder of hydraulic Legs depending on their extension
Current methods of calculation of parameters of hydraulic legs of powered supports are in most cases analytical and do not consider all complex of factors. Finite element model was developed to study this problem and used to analyze the influence of hydraulic legs extension on radial deformations of cylinder of different producers of powered supports at variation of hydraulic fluid pressure. It was revealed that radial deformations of cylinders along the axis of hydraulic legs increase in magnitude in direct proportion to the hydraulic fluid pressure and extension. Research results can be recommended to define optimal geometric parameters of hydraulic legs in respect to the minimal radial deformations of hydraulic cylinder increasing its impermeability and improving the work of cup seals. It is recommended to use the obtained results at power support designing
Influence of the Geometry of Beveled Edges on the Stress-Strain State of Hydraulic Cylinders
The studies were carried out to determine the influence of forms obtained when preparing edges for welding a cylinder for hydraulic legs; the maximum stresses were defined at the location of weld roots, depending on variable parameters. The stress-strain states were calculated using finite element method