4 research outputs found
Land-Use Change in Krabi Province of Thailand in 2000 and 2009
Thesis (M.Sc. in Research Methodology)--Prince of Songkla University, 201
Impact of air pollution on cardiorespiratory morbidities in Southern Thailand
Background: /Objectives: Air pollution seriously threatens human health; even low-level exposure can have negative consequences. The study aimed to explore the influence of air pollution on cardiorespiratory diseases, adjusting for climatic conditions. Methods: Poisson regression using a generalized additive model (GAMs) and a distributed lag non-linear model (DLNM) were used to explore the relationships between air pollution and cardiorespiratory illnesses. Results: Asthma, chronic obstructive pulmonary disease (COPD), cardiovascular disease (CVD), and lung cancer were reported at 88 per 10,000 population. Annual PM10 and PM2.5 levels were higher than WHO guidelines. PM10 and PM2.5 appeared to be on an upward trend, while NO2 and SO2 appeared to be on a downward trend. The 10 % increase in PM10 was significantly associated with an increase in inpatient department (IPD) admissions for asthma at a lag of 12–13 days and lung cancer at a lag of 14–15 days, whereas PM2.5 was associated with an increase in IPD admissions for asthma at a lag of 10–14 days and 13–15 days, respectively. A 10 % rise in PM10 was associated with an increase in COPD inpatient admissions at lag 2–6 days, while PM2.5 was associated with an increase in cardiovascular inpatient admissions at lag 4–5 days. A 10 % increase in NO2 increased admissions to COPD at all 15 lags, whereas a 10 % increase in CO increased admissions to lung cancer at lags 9–15 days. Conclusions: The rise in PM2.5 and PM10 levels in this area leads to increased exposure to PM pollutants, hence elevating the likelihood of developing cardiorespiratory diseases
Long-term air pollution exposure and serum lipids and blood sugar: A longitudinal cohort study from the electricity generating authority of Thailand study
Only a few studies have investigated the association between long-term exposure to air pollution and alterations of serum lipids and blood sugar level in developing countries. The present longitudinal study examined associations between long-term air pollution exposure and serum lipids [total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)] and fasting glucose (FG) in workers of the Electricity Generating Authority of Thailand (EGAT) in the Bangkok metropolitan region (BMR) of Thailand. We performed secondary analyses using the data obtained from 1, 839 participants (mean age, 58.3 years as of 2002) of the EGAT1 cohort study (2002–2012). The average concentration of each air pollutants (PM₁₀, O₃, NO₂, SO₂, and CO) at the sub-district level in BMR from 2002 to 2012 were estimated using the ordinary kriging method. Exposure periods were averaged to 3 months prior to laboratory testing. Linear mixed effects models were used to estimate associations between air pollution and serum lipids and blood sugar. After controlling for potential confounders, an interquartile range increment of PM₁₀, SO₂, and CO was associated with elevated LDL-C [6.6% (95%CI: 4.3, 9.0), 11.1% (7.2, 15.2), and 1.9% (1.1, 2.7), respectively] and FG [2.8% (1.5, 4.2), 6.8% (4.5, 9.1), and 1.1% (0.6, 1.5), respectively]. In addition, PM10, SO2, and CO were inversely associated with HDL-C [-1.8% (−3.7, 0.1), −3.3% (−6.2, −0.3), and −1.1 (−1.7, −0.5), respectively]. O₃ was negatively associated with TC, LDL-C, TG, and FG. These findings suggest inhalation of air pollutants may increase the risk of impaired metabolism of glucose and lipids
Long-term air pollution exposure and self-reported morbidity:a longitudinal analysis from the Thai cohort study (TCS)
Several studies have shown the health effects of air pollutants, especially in China, North American and Western European countries. But longitudinal cohort studies focused on health effects of long-term air pollution exposure are still limited in Southeast Asian countries where sources of air pollution, weather conditions, and demographic characteristics are different. The present study examined the association between long-term exposure to air pollution and self-reported morbidities in participants of the Thai cohort study (TCS) in Bangkok metropolitan region (BMR), Thailand.This study was supported by the International Collaborative Research Grants Scheme with joint grants from the Wellcome Trust UK (grant number GR071587MA) and the Australian National Health and Medical Research Council (NHMRC) (grant number 268055). It was also supported by a global health grant from the NHMRC (grant number 585426)