871 research outputs found

    Ground-State Properties of a Rotating Bose-Einstein Condensate with Attractive Interaction

    Full text link
    The ground state of a rotating Bose-Einstein condensate with attractive interaction in a quasi-one-dimensional torus is studied in terms of the ratio Îł\gamma of the mean-field interaction energy per particle to the single-particle energy-level spacing. The plateaus of quantized circulation are found to appear if and only if Îł<1\gamma<1 with the lengths of the plateaus reduced due to hybridization of the condensate over different angular-momentum states.Comment: 4 pages, 2 figures, Accepted for publication in Physical Reveiw Letter

    Plant species roles in pollination networks: an experimental approach

    Get PDF
    Pollination is an important ecosystem service threatened by current pollinator declines, making flower planting schemes an important strategy to recover pollination function. However, ecologists rarely test the attractiveness of chosen plants to pollinators in the field. Here, we experimentally test whether plant species roles in pollination networks can be used to identify species with the most potential to recover plant–pollinator communities. Using published pollination networks, we calculated each plant's centrality and chose five central and five peripheral plant species for introduction into replicate experimental plots. Flower visitation by pollinators was recorded in each plot and we tested the impact of introduced central and peripheral plant species on the pollinator and resident plant communities and on network structure. We found that the introduction of central plant species attracted a higher richness and abundance of pollinators than the introduction of peripheral species, and that the introduced central plant species occupied the most important network roles. The high attractiveness of central species to pollinators, however, did not negatively affect visitation to resident plant species by pollinators. We also found that the introduction of central plant species did not affect network structure, while networks with introduced peripheral species had lower centralisation and interaction evenness than networks with introduced central species. To our knowledge, this is the first time species network roles have been tested in a field experiment. Given that most restoration projects start at the plant community, being able to identify the plants with the highest potential to restore community structure and functioning should be a key goal for ecological restoration

    Mesoscopic Fermi gas in a harmonic trap

    Full text link
    We study the thermodynamical properties of a mesoscopic Fermi gas in view of recent possibilities to trap ultracold atoms in a harmonic potential. We focus on the effects of shell closure for finite small atom numbers. The dependence of the chemical potential, the specific heat and the density distribution on particle number and temperature is obtained. Isotropic and anisotropic traps are compared. Possibilities of experimental observations are discussed.Comment: 8 pages, 9 eps-figures included, Revtex, submitted to Phys. Rev. A, minor changes to figures and captions, corrected typo

    Single-particle excitations and the order parameter for a trapped superfluid Fermi gas

    Full text link
    We reveal a strong influence of a superfluid phase transition on the character of single-particle excitations of a trapped neutral-atom Fermi gas. Below the transition temperature the presence of a spatially inhomogeneous order parameter (gap) shifts up the excitation eigenenergies and leads to the appearance of in-gap excitations localized in the outer part of the gas sample. The eigenenergies become sensitive to the gas temperature and are no longer multiples of the trap frequencies. These features should manifest themselves in a strong change of the density oscillations induced by modulations of the trap frequencies and can be used for identifying the superfluid phase transition.Comment: 5 pages, RevTeX, 2 eps figure

    Accounting for data heterogeneity in integrative analysis and prediction methods: An application to Chronic Obstructive Pulmonary Disease

    Full text link
    Epidemiologic and genetic studies in chronic obstructive pulmonary disease (COPD) and many complex diseases suggest subgroup disparities (e.g., by sex). We consider this problem from the standpoint of integrative analysis where we combine information from different views (e.g., genomics, proteomics, clinical data). Existing integrative analysis methods ignore the heterogeneity in subgroups, and stacking the views and accounting for subgroup heterogeneity does not model the association among the views. To address analytical challenges in the problem of our interest, we propose a statistical approach for joint association and prediction that leverages the strengths in each view to identify molecular signatures that are shared by and specific to males and females and that contribute to the variation in COPD, measured by airway wall thickness. HIP (Heterogeneity in Integration and Prediction) accounts for subgroup heterogeneity, allows for sparsity in variable selection, is applicable to multi-class and to univariate or multivariate continuous outcomes, and incorporates covariate adjustment. We develop efficient algorithms in PyTorch. Our COPD findings have identified several proteins, genes, and pathways that are common and specific to males and females, some of which have been implicated in COPD, while others could lead to new insights into sex differences in COPD mechanisms

    Activity driven modeling of time varying networks

    Get PDF
    Network modeling plays a critical role in identifying statistical regularities and structural principles common to many systems. The large majority of recent modeling approaches are connectivity driven. The structural patterns of the network are at the basis of the mechanisms ruling the network formation. Connectivity driven models necessarily provide a time-aggregated representation that may fail to describe the instantaneous and fluctuating dynamics of many networks. We address this challenge by defining the activity potential, a time invariant function characterizing the agents' interactions and constructing an activity driven model capable of encoding the instantaneous time description of the network dynamics. The model provides an explanation of structural features such as the presence of hubs, which simply originate from the heterogeneous activity of agents. Within this framework, highly dynamical networks can be described analytically, allowing a quantitative discussion of the biases induced by the time-aggregated representations in the analysis of dynamical processes.Comment: 10 pages, 4 figure

    Three-dimensional vortex configurations in a rotating Bose Einstein condensate

    Full text link
    We consider a rotating Bose-Einstein condensate in a harmonic trap and investigate numerically the behavior of the wave function which solves the Gross Pitaevskii equation. Following recent experiments [Rosenbuch et al, Phys. Rev. Lett., 89, 200403 (2002)], we study in detail the line of a single quantized vortex, which has a U or S shape. We find that a single vortex can lie only in the x-z or y-z plane. S type vortices exist for all values of the angular velocity Omega while U vortices exist for Omega sufficiently large. We compute the energy of the various configurations with several vortices and study the three-dimensional structure of vortices

    Stability of a vortex in a small trapped Bose-Einstein condensate

    Full text link
    A second-order expansion of the Gross-Pitaevskii equation in the interaction parameter determines the thermodynamic critical angular velocity Omega_c for the creation of a vortex in a small axisymmetric condensate. Similarly, a second-order expansion of the Bogoliubov equations determines the (negative) frequency omega_a of the anomalous mode. Although Omega_c = -omega_a through first order, the second-order contributions ensure that the absolute value |omega_a| is always smaller than the critical angular velocity Omega_c. With increasing external rotation Omega, the dynamical instability of the condensate with a vortex disappears at Omega*=|omega_a|, whereas the vortex state becomes energetically stable at the larger value Omega_c. Both second-order contributions depend explicitly on the axial anisotropy of the trap. The appearance of a local minimum of the free energy for a vortex at the center determines the metastable angular velocity Omega_m. A variational calculation yields Omega_m=|\omega_a| to first order (hence Omega_m also coincides with the critical angular velocity Omega_c to this order). Qualitatively, the scenario for the onset of stability in the weak-coupling limit is the same as that found in the strong-coupling (Thomas-Fermi) limit.Comment: 8 pages, RevTe

    Subtle temperature-induced changes in small molecule conformer dynamics-observed and quantified by NOE spectroscopy

    Get PDF
    NOE-distance relationships are shown to be sufficiently accurate to monitor very small changes in conformer populations in response to temperature (<0.5%/10 degrees C) - in good agreement with Boltzmann-predictions, illustrating the effectiveness of accurate NOE-distance measurements in obtaining high quality dynamics as well as structural information for small molecules

    Rapid and safe ASAP acquisition with EXACT NMR

    Get PDF
    EXACT acquisition allows the fast and safer acquisition of ASAP 2D NMR experiments in just a few seconds.</p
    • …
    corecore