41 research outputs found

    Life History and Habitat Requirements of Burrowing Owls in Western Oklahoma

    Get PDF
    Wildlife Ecolog

    Reducing Detailed Vehicle Energy Dynamics to Physics-Like Models

    Full text link
    The energy demand of vehicles, particularly in unsteady drive cycles, is affected by complex dynamics internal to the engine and other powertrain components. Yet, in many applications, particularly macroscopic traffic flow modeling and optimization, structurally simple approximations to the complex vehicle dynamics are needed that nevertheless reproduce the correct effective energy behavior. This work presents a systematic model reduction pipeline that starts from complex vehicle models based on the Autonomie software and derives a hierarchy of simplified models that are fast to evaluate, easy to disseminate in open-source frameworks, and compatible with optimization frameworks. The pipeline, based on a virtual chassis dynamometer and subsequent approximation strategies, is reproducible and is applied to six different vehicle classes to produce concrete explicit energy models that represent an average vehicle in each class and leverage the accuracy and validation work of the Autonomie software.Comment: 40 pages, 9 figure

    The genome of Îľ15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage

    Get PDF
    AbstractThe genome sequence of the Salmonella enterica serovar Anatum-specific, serotype-converting bacteriophage ε15 has been completed. The nonredundant genome contains 39,671 bp and 51 putative genes. It most closely resembles the genome of φV10, an Escherichia coli O157:H7-specific temperate phage, with which it shares 36 related genes. More distant relatives include the Burkholderia cepacia-specific phage, BcepC6B (8 similar genes), the Bordetella bronchiseptica-specific phage, BPP-1 (8 similar genes) and the Photobacterium profundum prophage, P Pφpr1 (6 similar genes).ε15 gene identifications based on homologies with known gene families include the terminase small and large subunits, integrase, endolysin, two holins, two DNA methylase enzymes (one adenine-specific and one cytosine-specific) and a RecT-like enzyme. Genes identified experimentally include those coding for the serotype conversion proteins, the tail fiber, the major capsid protein and the major repressor. ε15's attP site and the Salmonella attB site with which it interacts during lysogenization have also been determined

    Coordinating Tissue Regeneration Through Transforming Growth Factorâ β Activated Kinase 1 Inactivation and Reactivation

    Full text link
    Aberrant wound healing presents as inappropriate or insufficient tissue formation. Using a model of musculoskeletal injury, we demonstrate that loss of transforming growth factorâ β activated kinase 1 (TAK1) signaling reduces inappropriate tissue formation (heterotopic ossification) through reduced cellular differentiation. Upon identifying increased proliferation with loss of TAK1 signaling, we considered a regenerative approach to address insufficient tissue production through coordinated inactivation of TAK1 to promote cellular proliferation, followed by reactivation to elicit differentiation and extracellular matrix production. Although the current regenerative medicine paradigm is centered on the effects of drug treatment (â drug onâ ), the impact of drug withdrawal (â drug offâ ) implicit in these regimens is unknown. Because current TAK1 inhibitors are unable to phenocopy genetic Tak1 loss, we introduce the dualâ inducible COmbinational Sequential Inversion ENgineering (COSIEN) mouse model. The COSIEN mouse model, which allows us to study the response to targeted drug treatment (â drug onâ ) and subsequent withdrawal (â drug offâ ) through genetic modification, was used here to inactivate and reactivate Tak1 with the purpose of augmenting tissue regeneration in a calvarial defect model. Our study reveals the importance of both the â drug onâ (Creâ mediated inactivation) and â drug offâ (Flpâ mediated reactivation) states during regenerative therapy using a mouse model with broad utility to study targeted therapies for disease. Stem Cells 2019;37:766â 778Manipulating transforming growth factor βâ activated kinase 1 for cell and scaffold free tissue regeneration using a dualâ inducible Combinational Sequential Inversion Engineering mouse model.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149573/1/stem2991_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149573/2/stem2991.pd

    Race Yourselves: A Longitudinal Exploration of Self-Competition Between Past, Present, and Future Performances in a VR Exergame

    Get PDF
    Participating in competitive races can be a thrilling experience for athletes, involving a rush of excitement and sensations of flow, achievement, and self-fulfilment. However, for non-athletes, the prospect of competition is often a scary one which affects intrinsic motivation negatively, especially for less fit, less competitive individuals. We propose a novel method making the positive racing experience accessible to non-athletes using a high-intensity cycling VR exergame: by recording and replaying all their previous gameplay sessions simultaneously, including a projected future performance, players can race against a crowd of "ghost" avatars representing their individual fitness journey. The experience stays relevant and exciting as every race adds a new competitor. A longitudinal study over four weeks and a cross-sectional study found that the new method improves physical performance, intrinsic motivation, and flow compared to a non-competitive exergame. Additionally, the longitudinal study provides insights into the longer-term effects of VR exergames

    An experiment in recreation management training

    No full text
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Not availabl

    Issues in the implementation of automotive control systems.

    Full text link
    This thesis presents enhancements to the design, synthesis, and implementation phases of the automotive control system development process. The torque converter slip control problem is presented and used as an application for the theoretical developments. These developments include modifications to the limits of performance analysis used in design phase feasibility studies. For the synthesis and implementation phases, a lifted-δ\delta-operator representation for discrete-time-multi-rate systems is developed. It is shown that this lifted-δ\delta-operator representation can be used to approximate single and multi-rate hybrid systems. It is also shown, via example, that δ\delta-operator representations can reduce coefficient and variable wordlength requirements when fixed-point arithmetic is employed.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/103719/1/9409648.pdfDescription of 9409648.pdf : Restricted to UM users only
    corecore