12 research outputs found

    The Activated Type 1–Polarized Cd8+ T Cell Population Isolated from an Effector Site Contains Cells with Flexible Cytokine Profiles

    Get PDF
    The capacity of activated T cells to alter their cytokine expression profiles after migration into an effector site has not previously been defined. We addressed this issue by paired daughter analysis of a type 1–polarized CD8+ effector T cell population freshly isolated from lung parenchyma of influenza virus–infected mice. Single T cells were activated to divide in vitro; individual daughter cells were then micromanipulated into secondary cultures with and without added IL-4 to assess their potential to express type 2 cytokine genes. The resultant subclones were analyzed for type 1 and 2 cytokine mRNAs at day 6–7. When the most activated (CD44highCD11ahigh) CD8+ subpopulation from infected lung was compared with naive or resting (CD44lowCD11alow) CD8+ cells from infected lung and from normal lymph nodes (LNs), both clonogenicity and plasticity of the cytokine response were highest in the LN population and lowest in the activated lung population, correlating inversely with effector function. Multipotential cells were nevertheless detected among clonogenic CD44highCD11ahigh lung cells at 30–50% of the frequency in normal LNs. The data indicate that activated CD8+ T cells can retain the ability to proliferate and express new cytokine genes in response to local stimuli after recruitment to an effector site

    The fluorolysis assay, a highly sensitive method for measuring the cytolytic activity of T cells at very low numbers

    No full text
    We have developed a highly sensitive cytolysis test, the fluorolysis assay, as a simple nonradioactive and inexpensive alternative to the standard Cr-51-release assay. P815 cells were stably transfected with a plasmid expressing the enhanced green fluorescent protein (EGFP) gene. These target cells were coated with or without cognate peptide or anti-CD3 Ab and then incubated with CD8(+) T cells to allow antigen-specific or nonspecific lysis. The degree of target cell lysis was measured using flow cytometry to count the percentage of viable propidium iodide(-) EGFP(+) cells, whose numbers were standardized to a reference number of fluorochrome-linked beads. By using small numbers of target cells (200-800 per reaction) and extended incubation times (up to 2 days), the antigen-specific cytolytic activity of one to two activated CD8(+) T cells of a CTL line could be detected. The redirected fluorolysis assay also measured the activity of very few ( greater than or equal to6) primary CD8(+) T cells following polyclonal activation. Importantly, antigen-specific lysis by small numbers ( greater than or equal to 25) of primary CD8(+) T cells could be directly measured ex vivo. This exquisite sensitivity of the fluorolysis assay, which was at least 8-33-folds higher than an optimized 51 Cr-release assay, allows in vitro and ex vivo studies of immune responses that would otherwise not be possible due to low CTL numbers or frequencies. (C) 2002 Elsevier Science B.V. All rights reserved

    A clonal culture system demonstrates that IL-4 induces a subpopulation of noncytolytic T cells with low CD8, perforin, and granzyme expression

    No full text
    Immune deviation of cytolytic T cell function, induced by type 2 cytokines like IL-4, is an attractive concept to explain failure of the immune system in some diseases. However, this concept is challenged by previous conflicting results on whether type 2 cytokine-producing CD8(+) T cells are cytolytic. Therefore, we have analyzed the relationship between cytolytic activity and cytokine production among large numbers of primary CD8(+) T cell clones. Single murine CD8(+) T cells of naive phenotype were activated at high efficiency with immobilized Abs to CD3, CD8, and CD11a in the presence of IL-2 (neutral conditions) or IL-2, IL-4, and anti-IFN-gamma Ab (type 2-polarizing conditions) for 8-9 days. Under neutral conditions, most clones produced IFN-gamma without IL-4 and were cytolytic. Under type 2-polarizing conditions, most clones produced IFN-gamma and IL-4 but displayed variable cytolytic activity and CD8 expression. Separation on the basis of surface CD8 levels revealed that, compared with CD8(high) cells from the same cultures, CD8(low) cells were poorly cytolytic and expressed low levels of perforin mRNA and protein and granzyme A, B, and C mRNA. A similar, smaller population of noncytolytic CD8(low) cells was identified among CD8(low) T cells activated in mixed lymphocyte reaction with IL-4. Variable efficiency of generation of the noncytolytic cells may account for the differing results of earlier studies. We conclude that IL-4 promotes the development of a noncytolytic CD8(low) T cell phenotype that might be important in tumor- or pathogen-induced immune deviation

    Quantitative assessment of the functional plasticity of memory CD8+ T\ua0cells

    Get PDF
    While the functional plasticity of memory CD4(+) T cells has been studied extensively, less is known about this property in memory CD8(+) T cells. Here, we report the direct measurement of plasticity by paired daughter analysis of effector and memory OT-I CD8(+) T cells primed in vivo with ovalbumin. Naive, effector, and memory OT-I cells were isolated and activated in single-cell culture; then, after the first division, their daughter cells were transferred to new cultures with and without IL-4; expression of IFN-gamma and IL-4 mRNAs was measured 5 days later in the resultant subclones. Approximately 40% of clonogenic memory CD8(+) T cells were bipotential in this assay, giving rise to an IL-4(-) subclone in the absence of IL-4 and an IL-4(+) subclone in the presence of IL-4. The frequency of bipotential cells was lower among memory cells than naive cells but markedly higher than among 8-day effectors. Separation based on high or low expression of CD62L, CD122, CD127, or Ly6C did not identify a phenotypic marker of the bipotential cells. Functional plasticity in memory CD8(+) T-cell populations can therefore reflect modulation at the level of a single memory cell and its progeny

    The genes for perforin, granzymes A-C and IFN-Îł are differentially expressed in single CD8+ T cells during primary activation

    No full text
    Here we show that the genes for perforin, the three major T cell granzymes (A-C) and IFN-Îł are differentially expressed during primary activation of naive CD8 T cells, kinetically and at the single-cell level. When CD44CD62LCD8 lymph node T cells were activated with IL-2 and immobilized antibodies to CD3, CD8 and CD11a, expression of perforin, granzyme B and IFN-Îł mRNAs was induced by day 2, and increased in parallel with perforin-dependent cytolytic activity. Granzyme C and A transcripts were not detected until 1 and 3 days later respectively. Single-cell PCR showed that expression frequencies rose in parallel with total levels of each mRNA, but that individual cells expressed diverse combinations of perforin, granzyme A-C and IFN-Îł mRNAs. These expression patterns indicated that the delayed expression of granzymes A and C was not due to late activation of distinct cell subpopulations. Statistical analysis of the data suggested that each gene was differentially regulated at the single-cell level. Individual naive CD8 T cells gave rise over 7 days to clones that expressed all five products at the clonal level, but also expressed diverse combinations at the single-cell level. We conclude that, during primary activation, CD8 T cells progressively acquired the ability to express most or all of these genes, and that the variable expression patterns observed among single cells within clones and populations reflected transient rather than heritable differences in expression profile
    corecore