3 research outputs found

    Aggregation of Sediment and Bacteria with Mucilage from the Opuntia ficus-indica Cactus

    Get PDF
    Flocculants are commonly used in industrial settings where solid-liquid separations are desired including industrial and municipal wastewater management and potable water production facilities. Conventional flocculants include inorganic metal salts and synthetic organic polymers. The cost, availability, and harmful effects of the non-biodegradable nature of these flocculants have led to the widespread study of natural flocculants. Current natural flocculants being studied include polysaccharides cultivated from microbial extracellular matrix products and plant based materials. In this study, the mucilage of Opuntia ficus-indica cactus was evaluated as a natural flocculant for sediments and bacteria. The O. ficus-indica cactus is also known as the nopal or prickly pear and is commonly used as a food source in Mexico and Latin America. Using simple extraction techniques non-gelling (NE) and gelling (GE) mucilage extracts were isolated from fresh cactus pads. Column tests were used to evaluate the flocculation and removal of suspended sediment and bacteria caused by mucilage addition. Throughout this work the mucilage\u27s ability as a flocculant was evaluated by varying mucilage type and concentration, suspended contaminant type and concentration, and cation type and concentration. Many of the results are explained in terms of the morphology and chemical composition of the GE and NE mucilage extracts. The extracts consist primarily of polysaccharides and differences in physical structure between mucilage types were seen using atomic force microscopy and transition electron microscopy. A variety of suspended particles were used to evaluate the mucilage as a flocculant including kaolin, acid-washed kaolin, and bacteria. The bacteria employed in this study include Bacillus cereus, Escherichia coli HB101 K12, and fully attenuated Bacillus anthracis Sterne strain. The addition of monovalent (Na+ and K+), divalent (Ca2+ and Mg2+), and trivalent (Al3+ and Fe3+) cations was studied alone and in combination with mucilage. In cation studies Ca2+ had the most profound effect on flocculation efficiency; therefore its efficacy was further explored. Mucilage was most effective with dosages between 5 and 50 mg/L for the contaminants studied. Using these optimal concentrations, 20 to 200 L of water could be treated with only 1 g of mucilage powder. Based on the extraction method used in this work, 1 g of mucilage can be obtained from a cactus pad weighing approximately 250 g (wet weight). Mucilage remained an effective flocculant over a wide range of suspended contaminant concentrations showing that mucilage is a versatile flocculant that can be tailored for a variety of applications. Overall, this work shows that the O. ficus-indica cactus is an effective flocculant for suspended sediments and bacteria. The cactus\u27 low cost, abundance, and current use in many areas make it an attractive alternative to traditionally used flocculants. Additionally, this work builds upon existing knowledge pertaining to natural flocculants and could offer insight into their general behaviors for water treatment applications

    Reducing Sediment and Bacterial Contamination in Water Using Mucilage Extracted from the \u3cem\u3eOpuntia ficus-indica\u3c/em\u3e Cactus

    Get PDF
    Throughout the past decade an increased amount of attention has been drawn to the water contamination problems that affect the world. As a result, a variety of purification methods targeted at communities in developing countries have surfaced and, although all have contributed to the effort of improving water quality, few have been accepted and sustained for long term usage. Case studies indicate that the most beneficial methods are those which use indigenous resources, as they are both abundant and readily accepted by the communities. In an attempt to make a contribution to the search for water purification methods that can serve in both developed and developing countries, two fractions of mucilage gum, a Gelling (GE) and a Non-Gelling (NE) Extract, were obtained from the Opuntia ficus-indica cactus and tested as a flocculating agent against sediment and bacteria suspended in surrogate ion-rich waters. Diatonic ions are known to influence both cell binding and mucilage properties, causing CaCl2 to be tested as a flocculating agent alone and in conjunction with mucilage. Column tests were utilized to determine the settling rates of contaminant removal from the waters and the precipitated flocs were then evaluated. In columns employing Kaolin as a model for sediment removal, settling rates as high as 13.2 cm/min were observed using GE versus a control (suspensions with no treatment) settling at 0.5 cm/min. B. cereus tests displayed flocculation initiation up to 10 minutes faster than columns treated with calcium chloride (CaCl2) when using less than 10 ppm (GE) and 5 ppm (NE) of mucilage in addition to CaCl2. B. cereus removal rates between 95 and 98% have been observed in high concentration tests (\u3e 108 cells/mL). Tests on E. coli flocculation differed slightly from those seen using B. cereus with control columns requiring 5 to 10 minutes longer to begin flocculation and mucilage treated columns displaying signs of flocculation much earlier. Mucilage is an ideal material for water purification and contaminant flocculation because it grows abundantly, is inexpensive and offers communities a sustainable technology

    Composition and method to reduce sediment and bacterial contamination from water

    Get PDF
    In recent years, a great deal of attention has been drawn to the issue of water contamination, particularly in developing countries, where an inexpensive, effective method of reducing waterborne pathogens and contaminants is needed. Experiments performed with mucilage extracted from the Opuntia ficus-indica cactus show that this mucilage is an effective tool for clearing contaminants from water supplies, including the removal of Escherichia coli and Bacillus cereus bacteria, and the reduction of arsenic concentrations with very low mucilage concentrations (5 mg/L and 10 mg/L). Results for Bacillus and E. coli show settling to be complete in approximately five to ten minutes with removal rates of up to 97%, when CaCl2 is co-applied. Arsenic is removed at between 35% to 85% by increasing the contact time between the mucilage and the arsenic solutions depending on the pH and mucilage concentration
    corecore