84 research outputs found

    Escitalopram reduces attentional performance in anxious older adults with high-expression genetic variants at serotonin 2A and 1B receptors

    Get PDF
    Older adults are among the most vulnerable to adverse cognitive effects of psychotropic medications and, therefore, the personalization of psychotropic treatment based on adverse drug reactions in this demographic is of great importance. We examined changes on neuropsychological tests of attention attributable to selective serotonin reuptake inhibitor (SSRI) treatment in anxious older adults. We also examined whether variation in serotonin receptor genes was associated with reduced attentional performance with SSRIs. We examined change from pre- to post-treatment in two attention measures – digit span and coding – in 133 adults aged ≥60 yr with generalized anxiety disorder in a 12-wk trial of escitalopram vs. placebo. We also examined attentional change in relation to genetic variability in four central serotonin receptors: the serotonin transporter and serotonin 1A, 2A and 1B receptors. Digit span scores were significantly lowered in patients receiving escitalopram relative to placebo, indicating reduced attentional performance attributable to the SSRI. Individuals with high-transcription variants in the receptors 5-HTR(2A) rs6311 and 5-HTR(1B) rs11568817 had greater reductions in attention with SSRI treatment compared to placebo. We conclude that SSRIs reduce attention in older adults, particularly in those with high-expression genetic variants at the serotonin 2A and 1B receptors. Analysing neuropsychological changes with SSRIs in relation to genetic variation in the serotonin system may be a useful strategy for detecting subgroups of older adults who are more susceptible to side-effects of SSRIs. These results, if confirmed, could lead to the personalization of SSRI use to reduce adverse neurocognitive effects

    Association of molecular senescence markers in late-life depression with clinical characteristics and treatment outcome

    Get PDF
    Importance: Many older adults with depression do not experience remission with antidepressant treatment, and markers of cellular senescence in late-life depression (LLD) are associated with greater severity of depression, greater executive dysfunction, and higher medical illness burden. Since these clinical characteristics are associated with remission in LLD, molecular and cellular senescence abnormalities could be a possible biological mechanism underlying poor treatment response in this population. Objective: To examine whether the senescence-associated secretory phenotype (SASP) index was associated with the likelihood of remission from a depressive episode in older adults. Design, Setting, and Participants: A nonrandomized, open-label clinical trial was conducted between August 2009 and August 2014 in Pittsburgh, Pennsylvania; St Louis, Missouri; and Toronto, Ontario, Canada, with older adults in a current major depressive episode according to the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition, Text Revision) diagnostic criteria. Data from biomarker analyses were reported according to the clinical trial archived plasma samples run in March 2021. Data were analyzed from June to November 2021. Exposure: Venlafaxine extended release (dose ranging from 37.5 mg to 300 mg daily) for up to 12 weeks. Main Outcomes and Measures: The association between a composite biomarker-based index (SASP index) and treatment remission in older adults with major depression was measured using clinical data and blood samples. Results: There were 416 participants with a mean (SD) age of 60.02 (7.13) years; 64% (265 participants) were self-reported female, and the mean (SD) Montgomery-Asberg Depression Rating Scale score was 26.6 (5.7). Higher SASP index scores were independently associated with higher rates of nonremission, with an increase of 1 unit in the SASP index score increasing the odds of nonremission by 19% (adjusted odds ratio, 1.19; 95% CI, 1.05-1.35; P = .006). In contrast, no individual SASP factors were associated with remission in LLD. Conclusions and Relevance: Using clinical data and blood samples from a nonrandomized clinical trial, the results of this study suggest that molecular and cellular senescence, as measured with the SASP index, is associated with worse treatment outcomes in LLD. Combining this index score reflecting interrelated biological processes with other molecular, clinical, and neuroimaging markers may be useful in evaluating antidepressant treatment outcomes. These findings inform a path forward for geroscience-guided interventions targeting senescence to improve remission rates in LLD. Trial Registration: ClinicalTrials.gov Identifier: NCT00892047

    A randomized controlled trial of amyloid positron emission tomography results disclosure in mild cognitive impairment

    Full text link
    IntroductionRecent studies suggest that Alzheimer’s disease (AD) biomarker disclosure has no discernable psychological impact on cognitively healthy persons. Far less is known about how such results affect symptomatic individuals and their caregivers.MethodsRandomized controlled trial of 82 mild cognitive impairment (MCI) patient and caregiver dyads (total n = 164) to determine the effect of receiving amyloid positron emission tomography results on understanding of, and perceived efficacy to cope with, MCI over 52 weeks of follow‐up.ResultsGains in the primary outcomes were not consistently observed. Amyloid negative patients reported greater perceived ambiguity regarding MCI at follow‐up, while moderate and sustained emotional distress was observed in patients, and to a lesser extent, caregivers, of those who were amyloid positive. There was no corresponding increase in depressive symptoms.DiscussionThese findings point to the possibility that both MCI patients and caregivers may need emotional support after the disclosure of amyloid scan results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163444/2/alz12129_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163444/1/alz12129.pd

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification

    Cognitive Functioning and Late-Life Depression

    No full text
    corecore