6,163 research outputs found

    Alternative Buffer-Layers for the Growth of SrBi2Ta2O9 on Silicon

    Full text link
    In this work we investigate the influence of the use of YSZ and CeO2/YSZ as insulators for Metal- Ferroelectric-Insulator-Semiconductor (MFIS) structures made with SrBi2Ta2O9 (SBT). We show that by using YSZ only the a-axis oriented Pyrochlore phase could be obtained. On the other hand the use of a CeO2/YSZ double-buffer layer gave a c-axis oriented SBT with no amorphous SiO2 inter- diffusion layer. The characteristics of MFIS diodes were greatly improved by the use of the double buffer. Using the same deposition conditions the memory window could be increased from 0.3 V to 0.9 V. From the piezoelectric response, nano-meter scale ferroelectric domains could be clearly identified in SBT thin films.Comment: 5 pages, 9 figures, 13 refernece

    How Water Advances on Superhydrophobic Surfaces

    No full text

    The Origin of the Peritrophic Membrane in Sciara and the Honey Bee

    Get PDF

    Shape-Designable Polyhedral Liquid Marbles/Plasticines Stabilized with Polymer Plates

    Get PDF
    Polyhedral liquid marbles/plasticines are prepared using (sub)millimeter-sized polymer plates as a stabilizer and water as an inner liquid. Precise control of size and shape can be successfully performed by tuning the size ratio of the water droplet and the plate, number of plates adsorbed to the droplet, coalescence (jointing) of multiple polyhedral liquid marbles/plasticines, and application of external mechanical stress. Thanks to interfacial jamming of the plates, plastic deformation of the liquid marbles/plasticines is achieved. The authors are able to fabricate liquid marbles/plasticines with various shapes including A–Z letters of alphabet. Liquid marble/plasticine with an aspect ratio exceeding 800, the largest aspect ratio ever reported, is also successfully prepared; the length of the liquid marble/plasticine exceeded 1.5 m. The liquid marbles can be picked up and be piled up on top of each other using tweezers or fingers. Furthermore, Janus-type liquid marbles/plasticines with different curvatures and different stabilizers in a single liquid marble/plasticine can be fabricated by coalescence (jointing) of near-spherical and cuboid liquid marbles/plasticines stabilized by plates with different sizes. An internal liquid flow from the near-spherical liquid marble to the cuboid liquid marble/plasticine immediately after jointing is observed, making this system act as a micropump

    Thermal Characterization of Dynamic Silicon Cantilever Array Sensors by Digital Holographic Microscopy

    Get PDF
    In this paper, we apply a digital holographic microscope (DHM) in conjunction with stroboscopic acquisition synchronization. Here, the temperature-dependent decrease of the first resonance frequency (S1(T)) and Young’s elastic modulus (E1(T)) of silicon micromechanical cantilever sensors (MCSs) are measured. To perform these measurements, the MCSs are uniformly heated from T0 = 298 K to T = 450 K while being externally actuated with a piezo-actuator in a certain frequency range close to their first resonance frequencies. At each temperature, the DHM records the time-sequence of the 3D topographies for the given frequency range. Such holographic data allow for the extracting of the out-of-plane vibrations at any relevant area of the MCSs. Next, the Bode and Nyquist diagrams are used to determine the resonant frequencies with a precision of 0.1 Hz. Our results show that the decrease of resonance frequency is a direct consequence of the reduction of the silicon elastic modulus upon heating. The measured temperature dependence of the Young’s modulus is in very good accordance with the previously-reported values, validating the reliability and applicability of this method for micromechanical sensing applications

    A systematic framework for predictive biomarkers in immune effector cell-associated neurotoxicity syndrome

    Get PDF
    Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the management of several life-threatening malignancies, often achieving durable sustained responses. The number of patients treated with this new class of cell-based therapy, along with the number of Food and Drug Association (FDA) approved indications, are growing significantly. Unfortunately Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS) can often occur after treatment with CAR-T cells, and severe ICANS can be associated with significant morbidity and mortality. Current standard treatments are mainly steroids and supportive care, highlighting the need for early identification. In the last several years, a range of predictive biomarkers have been proposed to distinguish patients at increased risk for developing ICANS. In this review, we discuss a systematic framework to organize potential predictive biomarkers that builds on our current understanding of ICANS
    • …
    corecore