19 research outputs found

    The subunit size of alcohol dehydrogenates

    Get PDF

    Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling

    No full text
    The ability to actively remodel membranes in response to nucleotide hydrolysis has largely been attributed to GTPases of the dynamin superfamily, and these have been extensively studied1. Epsin homology (EH)-domain-containing proteins (EHDs/RME-1/pincher) comprise a less-well-characterized class of highly conserved eukaryotic ATPases implicated in clathrin-independent endocytosis2, and recycling from endosomes3, 4. Here we show that EHDs share many common features with the dynamin superfamily, such as a low affinity for nucleotides, the ability to tubulate liposomes in vitro, oligomerization around lipid tubules in ring-like structures and stimulated nucleotide hydrolysis in response to lipid binding. We present the structure of EHD2, bound to a non-hydrolysable ATP analogue, and provide evidence consistent with a role for EHDs in nucleotide-dependent membrane remodelling in vivo. The nucleotide-binding domain is involved in dimerization, which creates a highly curved membrane-binding region in the dimer. Oligomerization of dimers occurs on another interface of the nucleotide-binding domain, and this allows us to model the EHD oligomer. We discuss the functional implications of the EHD2 structure for understanding membrane deformation

    Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature

    Get PDF
    A spectrum of membrane curvatures exists within cells, and proteins have evolved different modules to detect, create, and maintain these curvatures. Here we present the crystal structure of one such module found within human FCHo2. This F-BAR (extended FCH) module consists of two F-BAR domains, forming an intrinsically curved all-helical antiparallel dimer with a Kd of 2.5 microM. The module binds liposomes via a concave face, deforming them into tubules with variable diameters of up to 130 nm. Pulse EPR studies showed the membrane-bound dimer is the same as the crystal dimer, although the N-terminal helix changed conformation on membrane binding. Mutation of a phenylalanine on this helix partially attenuated narrow tubule formation, and resulted in a gain of curvature sensitivity. This structure shows a distant relationship to curvature-sensing BAR modules, and suggests how similar coiled-coil architectures in the BAR superfamily have evolved to expand the repertoire of membrane-sculpting possibilities
    corecore