604 research outputs found
Four New Planets Orbiting Metal-enriched Stars
Peer reviewe
Optimum design and testing of a postbuckled stiffened panel
The efficient, industrially used, linear elastic
preliminary design software VICONOPT is employed
to design a stiffened panel with a post-buckled
reserve of strength. The initial buckling mode is a
local skin mode in longitudinal compression with
allowance being made for the effects of an initial
overall imperfection. The resulting panel has been
analyzed using the non-linear FE package ABAQUS
and four laboratory specimens have been tested to
failure. The similarity of the experimental failure with
the VICONOPT and ABAQUS predictions suggests
that VICONOPT can give a satisfactory preliminary
design. While neither model matches completely the
boundary conditions found in a real aircraft
compression panel, it is suggested that the
VICONOPT model may be a better representation
than either the ABAQUS model or the experimental
tests
The Centurion 18 telescope of the Wise Observatory
We describe the second telescope of the Wise Observatory, a 0.46-m Centurion
18 (C18) installed in 2005, which enhances significantly the observing
possibilities. The telescope operates from a small dome and is equipped with a
large-format CCD camera. In the last two years this telescope was intensively
used in a variety of monitoring projects.
The operation of the C18 is now automatic, requiring only start-up at the
beginning of a night and close-down at dawn. The observations are mostly
performed remotely from the Tel Aviv campus or even from the observer's home.
The entire facility was erected for a component cost of about 70k$ and a labor
investment of a total of one man-year.
We describe three types of projects undertaken with this new facility: the
measurement of asteroid light variability with the purpose of determining
physical parameters and binarity, the following-up of transiting extrasolar
planets, and the study of AGN variability. The successful implementation of the
C18 demonstrates the viability of small telescopes in an age of huge
light-collectors, provided the operation of such facilities is very efficient.Comment: 16 pages, 13 figures, some figures quality was degraded, accepted for
publication in Astrophysics and Space Scienc
Colloquium: Mechanical formalisms for tissue dynamics
The understanding of morphogenesis in living organisms has been renewed by
tremendous progressin experimental techniques that provide access to
cell-scale, quantitative information both on theshapes of cells within tissues
and on the genes being expressed. This information suggests that
ourunderstanding of the respective contributions of gene expression and
mechanics, and of their crucialentanglement, will soon leap forward.
Biomechanics increasingly benefits from models, which assistthe design and
interpretation of experiments, point out the main ingredients and assumptions,
andultimately lead to predictions. The newly accessible local information thus
calls for a reflectionon how to select suitable classes of mechanical models.
We review both mechanical ingredientssuggested by the current knowledge of
tissue behaviour, and modelling methods that can helpgenerate a rheological
diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and
tissue scale ("inter-cell") contributions. We recall the mathematical framework
developpedfor continuum materials and explain how to transform a constitutive
equation into a set of partialdifferential equations amenable to numerical
resolution. We show that when plastic behaviour isrelevant, the dissipation
function formalism appears appropriate to generate constitutive equations;its
variational nature facilitates numerical implementation, and we discuss
adaptations needed in thecase of large deformations. The present article
gathers theoretical methods that can readily enhancethe significance of the
data to be extracted from recent or future high throughput
biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few
corrections to the published version, all in Appendix D.2 devoted to large
deformation
Biosignatures from Earth-Like Planets Around M Dwarfs
Coupled one-dimensional photochemical-climate calculations have been
performed for hypothetical Earth-like planets around M dwarfs. Visible,
near-infrared and thermal-infrared synthetic spectra of these planets were
generated to determine which biosignature gases might be observed by a future,
space-based telescope. Our star sample included two observed active M dwarfs,
AD Leo and GJ 643, and three quiescent model stars. The spectral distribution
of these stars in the ultraviolet generates a different photochemistry on these
planets. As a result, the biogenic gases CH4, N2O, and CH3Cl have substantially
longer lifetimes and higher mixing ratios than on Earth, making them
potentially observable by space-based telescopes. On the active M-star planets,
an ozone layer similar to Earth's was developed that resulted in a
spectroscopic signature comparable to the terrestrial one. The simultaneous
detection of O2 (or O3) and a reduced gas in a planet's atmosphere has been
suggested as strong evidence for life. Planets circling M stars may be good
locations to search for such evidence.Comment: 34 pages, 10 figures, Astrobiology, in pres
Advances in Antisense Oligonucleotide Development for Target Identification, Validation, and as Novel Therapeutics
Antisense oligonucleotides (As-ODNs) are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt), 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases
The Theory of Brown Dwarfs and Extrasolar Giant Planets
Straddling the traditional realms of the planets and the stars, objects below
the edge of the main sequence have such unique properties, and are being
discovered in such quantities, that one can rightly claim that a new field at
the interface of planetary science and and astronomy is being born. In this
review, we explore the essential elements of the theory of brown dwarfs and
giant planets, as well as of the new spectroscopic classes L and T. To this
end, we describe their evolution, spectra, atmospheric compositions, chemistry,
physics, and nuclear phases and explain the basic systematics of
substellar-mass objects across three orders of magnitude in both mass and age
and a factor of 30 in effective temperature. Moreover, we discuss the
distinctive features of those extrasolar giant planets that are irradiated by a
central primary, in particular their reflection spectra, albedos, and transits.
Aspects of the latest theory of Jupiter and Saturn are also presented.
Throughout, we highlight the effects of condensates, clouds, molecular
abundances, and molecular/atomic opacities in brown dwarf and giant planet
atmospheres and summarize the resulting spectral diagnostics. Where possible,
the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for
publication in the Reviews of Modern Physics. 30 figures are color. Most of
the figures are in GIF format to reduce the overall size. The full version
with figures can also be found at:
http://jupiter.as.arizona.edu/~burrows/papers/rm
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
- …