43 research outputs found

    Activity pacing for osteoarthritis symptom management: study design and methodology of a randomized trial testing a tailored clinical approach using accelerometers for veterans and non-veterans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoarthritis (OA) is a prevalent chronic disease and a leading cause of disability in adults. For people with knee and hip OA, symptoms (e.g., pain and fatigue) can interfere with mobility and physical activity. Whereas symptom management is a cornerstone of treatment for knee and hip OA, limited evidence exists for behavioral interventions delivered by rehabilitation professionals within the context of clinical care that address how symptoms affect participation in daily activities. Activity pacing, a strategy in which people learn to preplan rest breaks to avoid symptom exacerbations, has been effective as part of multi-component interventions, but hasn't been tested as a stand-alone intervention in OA or as a tailored treatment using accelerometers. In a pilot study, we found that participants who underwent a tailored activity pacing intervention had reduced fatigue interference with daily activities. We are now conducting a full-scale trial.</p> <p>Methods/Design</p> <p>This paper provides a description of our methods and rationale for a trial that evaluates a tailored activity pacing intervention led by occupational therapists for adults with knee and hip OA. The intervention uses a wrist accelerometer worn during the baseline home monitoring period to glean recent symptom and physical activity patterns and to tailor activity pacing instruction based on how symptoms relate to physical activity. At 10 weeks and 6 months post baseline, we will examine the effectiveness of a tailored activity pacing intervention on fatigue, pain, and physical function compared to general activity pacing and usual care groups. We will also evaluate the effect of tailored activity pacing on physical activity (PA).</p> <p>Discussion</p> <p>Managing OA symptoms during daily life activity performance can be challenging to people with knee and hip OA, yet few clinical interventions address this issue. The activity pacing intervention tested in this trial is designed to help people modulate their activity levels and reduce symptom flares caused by too much or too little activity. As a result of this trial, we will be able to determine if activity pacing is more effective than usual care, and among the intervention groups, if an individually tailored approach improves fatigue and pain more than a general activity pacing approach.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01192516">NCT01192516</a></p

    Ribosome-Dependent ATPase Interacts with Conserved Membrane Protein in Escherichia coli to Modulate Protein Synthesis and Oxidative Phosphorylation

    Get PDF
    Elongation factor RbbA is required for ATP-dependent deacyl-tRNA release presumably after each peptide bond formation; however, there is no information about the cellular role. Proteomic analysis in Escherichia coli revealed that RbbA reciprocally co-purified with a conserved inner membrane protein of unknown function, YhjD. Both proteins are also physically associated with the 30S ribosome and with members of the lipopolysaccharide transport machinery. Genome-wide genetic screens of rbbA and yhjD deletion mutants revealed aggravating genetic interactions with mutants deficient in the electron transport chain. Cells lacking both rbbA and yhjD exhibited reduced cell division, respiration and global protein synthesis as well as increased sensitivity to antibiotics targeting the ETC and the accuracy of protein synthesis. Our results suggest that RbbA appears to function together with YhjD as part of a regulatory network that impacts bacterial oxidative phosphorylation and translation efficiency

    A randomised controlled trial evaluating family mediated exercise (FAME) therapy following stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stroke is a leading cause of disability among adults worldwide. Evidence suggests that increased duration of exercise therapy following stroke has a positive impact on functional outcome following stroke. The main objective of this randomised controlled trial is to evaluate the impact of additional family assisted exercise therapy in people with acute stroke.</p> <p>Methods/Design</p> <p>A prospective multi-centre single blind randomised controlled trial will be conducted. Forty patients with acute stroke will be randomised into either an experimental or control group. The experimental group will receive routine therapy and additional lower limb exercise therapy in the form of family assisted exercises. The control group will receive routine therapy with no additional formal input from their family members. Participants will be assessed at baseline, post intervention and followed up at three months using a series of standardised outcome measures. A secondary aim of the project is to evaluate the impact of the family mediated exercise programme on the person with stroke and the individual(s) assisting in the delivery of exercises using a qualitative methodology. The study has gained ethical approval from the Research Ethics Committees of each of the clinical sites involved in the study.</p> <p>Discussion</p> <p>This study will evaluate a structured programme of exercises that can be delivered to people with stroke by their 'family members/friends'. Given that the progressive increase in the population of older people is likely to lead to an increased prevalence of stroke in the future, it is important to reduce the burden of this illness on the individual, the family and society. Family mediated exercises can maximise the carry over outside formal physiotherapy sessions, giving patients the opportunity for informal practice.</p> <p>Trial Registration</p> <p>The protocol for this study is registered with the US NIH Clinical trials registry (NCT00666744)</p

    False positive reduction in protein-protein interaction predictions using gene ontology annotations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many crucial cellular operations such as metabolism, signalling, and regulations are based on protein-protein interactions. However, the lack of robust protein-protein interaction information is a challenge. One reason for the lack of solid protein-protein interaction information is poor agreement between experimental findings and computational sets that, in turn, comes from huge false positive predictions in computational approaches. Reduction of false positive predictions and enhancing true positive fraction of computationally predicted protein-protein interaction datasets based on highly confident experimental results has not been adequately investigated.</p> <p>Results</p> <p>Gene Ontology (GO) annotations were used to reduce false positive protein-protein interactions (PPI) pairs resulting from computational predictions. Using experimentally obtained PPI pairs as a training dataset, eight top-ranking keywords were extracted from GO molecular function annotations. The sensitivity of these keywords is 64.21% in the yeast experimental dataset and 80.83% in the worm experimental dataset. The specificities, a measure of recovery power, of these keywords applied to four predicted PPI datasets for each studied organisms, are 48.32% and 46.49% (by average of four datasets) in yeast and worm, respectively. Based on eight top-ranking keywords and co-localization of interacting proteins a set of two knowledge rules were deduced and applied to remove false positive protein pairs. The '<it>strength</it>', a measure of improvement provided by the rules was defined based on the signal-to-noise ratio and implemented to measure the applicability of knowledge rules applying to the predicted PPI datasets. Depending on the employed PPI-predicting methods, the <it>strength </it>varies between two and ten-fold of randomly removing protein pairs from the datasets.</p> <p>Conclusion</p> <p>Gene Ontology annotations along with the deduced knowledge rules could be implemented to partially remove false predicted PPI pairs. Removal of false positives from predicted datasets increases the true positive fractions of the datasets and improves the robustness of predicted pairs as compared to random protein pairing, and eventually results in better overlap with experimental results.</p

    A randomised controlled trial to evaluate the efficacy of a 6 month dietary and physical activity intervention for prostate cancer patients receiving androgen deprivation therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment with Androgen Deprivation Therapy (ADT) for prostate cancer is associated with changes in body composition including increased fat and decreased lean mass; increased fatigue, and a reduction in quality of life. No study to date has evaluated the effect of dietary and physical activity modification on the side-effects related to ADT. The aim of this study is to evaluate the efficacy of a 6-month dietary and physical activity intervention for prostate cancer survivors receiving ADT to minimise the changes in body composition, fatigue and quality of life, typically associated with ADT.</p> <p>Methods</p> <p>Men are recruited to this study if their treatment plan is to receive ADT for at least 6 months. Men who are randomised to the intervention arm receive a home-based tailored intervention to meet the following guidelines a) ≥ 5 servings vegetables and fruits/day; b) 30%-35% of total energy from fat, and < 10% energy from saturated fat/day; c) 10% of energy from polyunsaturated fat/day; d) limited consumption of processed meats; e) 25-35 gm of fibre/day; f) alcoholic drinks ≤ 28 units/week; g) limited intake of foods high in salt and/or sugar. They are also encouraged to include at least 30 minutes of brisk walking, 5 or more days per week. The primary outcomes are change in body composition, fatigue and quality of life scores. Secondary outcomes include dietary intake, physical activity and perceived stress. Baseline information collected includes: socio-economic status, treatment duration, perceived social support and health status, family history of cancer, co-morbidities, medication and supplement use, barriers to change, and readiness to change their health behaviour. Data for the primary and secondary outcomes will be collected at baseline, 3 and 6 months from 47 intervention and 47 control patients.</p> <p>Discussion</p> <p>The results of this study will provide detailed information on diet and physical activity levels in prostate cancer patients treated with ADT and will test the feasibility and efficacy of a diet and physical activity intervention which could provide essential information to develop guidelines for prostate cancer patients to minimise the side effects related to ADT.</p> <p>Trial registration</p> <p>ISRCTN trial number ISCRTN75282423</p

    AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington's disease.

    Get PDF
    Huntington's disease (HD) is a fatal progressive neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene. To date, there is no treatment to halt or reverse the course of HD. Lowering of either total or only the mutant HTT expression is expected to have therapeutic benefit. This can be achieved by engineered micro (mi)RNAs targeting HTT transcripts and delivered by an adeno-associated viral (AAV) vector. We have previously showed a miHTT construct to induce total HTT knock-down in Hu128/21 HD mice, while miSNP50T and miSNP67T constructs induced allele-selective HTT knock-down in vitro. In the current preclinical study, the mechanistic efficacy and gene specificity of these selected constructs delivered by an AAV serotype 5 (AAV5) vector was addressed using an acute HD rat model. Our data demonstrated suppression of mutant HTT messenger RNA, which almost completely prevented mutant HTT aggregate formation, and ultimately resulted in suppression of DARPP-32-associated neuronal dysfunction. The AAV5-miHTT construct was found to be the most efficient, although AAV5-miSNP50T demonstrated the anticipated mutant HTT allele selectivity and no passenger strand expression. Ultimately, AAV5-delivered-miRNA-mediated HTT lowering did not cause activation of microglia or astrocytes suggesting no immune response to the AAV5 vector or therapeutic precursor sequences. These preclinical results suggest that using gene therapy to knock-down HTT may provide important therapeutic benefit for HD patients and raised no safety concerns, which supports our ongoing efforts for the development of an RNA interference-based gene therapy product for HD

    Short-term exposure to traffic-related air pollution and daily mortality in London, UK.

    Get PDF
    Epidemiological studies have linked daily concentrations of urban air pollution to mortality, but few have investigated specific traffic sources that can inform abatement policies. We assembled a database of >100 daily, measured and modelled pollutant concentrations characterizing air pollution in London between 2011 and 2012. Based on the analyses of temporal patterns and correlations between the metrics, knowledge of local emission sources and reference to the existing literature, we selected, a priori, markers of traffic pollution: oxides of nitrogen (general traffic); elemental and black carbon (EC/BC) (diesel exhaust); carbon monoxide (petrol exhaust); copper (tyre), zinc (brake) and aluminium (mineral dust). Poisson regression accounting for seasonality and meteorology was used to estimate the percentage change in risk of death associated with an interquartile increment of each pollutant. Associations were generally small with confidence intervals that spanned 0% and tended to be negative for cardiovascular mortality and positive for respiratory mortality. The strongest positive associations were for EC and BC adjusted for particle mass and respiratory mortality, 2.66% (95% confidence interval: 0.11, 5.28) and 2.72% (0.09, 5.42) per 0.8 and 1.0 μg/m(3), respectively. These associations were robust to adjustment for other traffic metrics and regional pollutants, suggesting a degree of specificity with respiratory mortality and diesel exhaust containing EC/BC

    Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

    Get PDF
    peer-reviewedBackground: About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results: The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified. Conclusions: Transcriptional diversity can potentially be generated in poly-Q encoding genes by the impact of CAG repeat tracts on mRNA alternative splicing. This effect, combined with the physical interactions of the encoded proteins in large transcriptional regulatory complexes suggests that polymorphic variations of proteins in these complexes have strong potential to affect phenotype.Dairy Australia (through the Innovative Dairy Cooperative Research Center

    Genetic Interaction Maps in Escherichia coli Reveal Functional Crosstalk among Cell Envelope Biogenesis Pathways

    Get PDF
    As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium) and prototrophic (minimal medium) culture conditions. The differential patterns of genetic interactions detected among >235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens) and an important target

    Phenotype Enhancement Screen of a Regulatory spx Mutant Unveils a Role for the ytpQ Gene in the Control of Iron Homeostasis

    Get PDF
    Spx is a global regulator of genes that are induced by disulfide stress in Bacillus subtilis. The regulon that it governs is comprised of over 120 genes based on microarray analysis, although it is not known how many of these are under direct Spx control. Most of the Spx-regulated genes (SRGs) are of unknown function, but many encode products that are conserved in low %GC Gram-positive bacteria. Using a gene-disruption library of B. subtilis genomic mutations, the SRGs were screened for phenotypes related to Spx-controlled activities, such as poor growth in minimal medium and sensitivity to methyglyoxal, but nearly all of the SRG mutations showed little if any phenotype. To uncover SRG function, the mutations were rescreened in an spx mutant background to determine which mutant SRG allele would enhance the spx mutant phenotype. One of the SRGs, ytpQ was the site of a mutation that, when combined with an spx null mutation, elevated the severity of the Spx mutant phenotype, as shown by reduced growth in a minimal medium and by hypersensitivity to methyglyoxal. The ytpQ mutant showed elevated oxidative protein damage when exposed to methylglyoxal, and reduced growth rate in liquid culture. Proteomic and transcriptomic data indicated that the ytpQ mutation caused the derepression of the Fur and PerR regulons of B. subtilis. Our study suggests that the ytpQ gene, encoding a conserved DUF1444 protein, functions directly or indirectly in iron homeostasis. The ytpQ mutant phenotype mimics that of a fur mutation, suggesting a condition of low cellular iron. In vitro transcription analysis indicated that Spx stimulates transcription from the ytpPQR operon within which the ytpQ gene resides. The work uncovers a link between Spx and control of iron homeostasis
    corecore