71 research outputs found

    Comparison of methods for estimating continuous distributions of relaxation times

    Get PDF
    The nonparametric estimation of the distribution of relaxation times approach is not as frequently used in the analysis of dispersed response of dielectric or conductive materials as are other immittance data analysis methods based on parametric curve fitting techniques. Nevertheless, such distributions can yield important information about the physical processes present in measured material. In this letter, we apply two quite different numerical inversion methods to estimate the distribution of relaxation times for glassy \lila\ dielectric frequency-response data at 225 \kelvin. Both methods yield unique distributions that agree very closely with the actual exact one accurately calculated from the corrected bulk-dispersion Kohlrausch model established independently by means of parametric data fit using the corrected modulus formalism method. The obtained distributions are also greatly superior to those estimated using approximate functions equations given in the literature.Comment: 4 pages and 4 figure

    How can one probe Podolsky Electrodynamics?

    Full text link
    We investigate the possibility of detecting the Podolsky generalized electrodynamics constant aa. First we analyze an ion interferometry apparatus proposed by B. Neyenhuis, et al (Phys. Rev. Lett. 99, (2007) 200401) who looked for deviations from Coulomb's inverse-square law in the context of Proca model. Our results show that this experiment has not enough precision for measurements of aa. In order to set up bounds for aa we investigate the influence of Podolsky's electrostatic potential on the ground state of the Hydrogen atom. The value of the ground state energy of the Hydrogen atom requires Podolsky's constant to be smaller than 5.6 fm, or in energy scales larger than 35.51 MeV.Comment: 12 pages, 2 figure

    Quasinormal modes of plane-symmetric anti-de Sitter black holes: a complete analysis of the gravitational perturbations

    Full text link
    We study in detail the quasinormal modes of linear gravitational perturbations of plane-symmetric anti-de Sitter black holes. The wave equations are obtained by means of the Newman-Penrose formalism and the Chandrasekhar transformation theory. We show that oscillatory modes decay exponentially with time such that these black holes are stable against gravitational perturbations. Our numerical results show that in the large (small) black hole regime the frequencies of the ordinary quasinormal modes are proportional to the horizon radius r+r_{+} (wave number kk). The frequency of the purely damped mode is very close to the algebraically special frequency in the small horizon limit, and goes as ik2/3r+ik^{2}/3r_{+} in the opposite limit. This result is confirmed by an analytical method based on the power series expansion of the frequency in terms of the horizon radius. The same procedure applied to the Schwarzschild anti-de Sitter spacetime proves that the purely damped frequency goes as i(l1)(l+2)/3r+i(l-1)(l+2)/3r_{+}, where ll is the quantum number characterizing the angular distribution. Finally, we study the limit of high overtones and find that the frequencies become evenly spaced in this regime. The spacing of the frequency per unit horizon radius seems to be a universal quantity, in the sense that it is independent of the wave number, perturbation parity and black hole size.Comment: Added new material on the asymptotic behavior of QNM

    Extracting spectral density function of a binary composite without a-priori assumption

    Full text link
    The spectral representation separates the contributions of geometrical arrangement (topology) and intrinsic constituent properties in a composite. The aim of paper is to present a numerical algorithm based on the Monte Carlo integration and contrainted-least-squares methods to resolve the spectral density function for a given system. The numerical method is verified by comparing the results with those of Maxwell-Garnett effective permittivity expression. Later, it is applied to a well-studied rock-and-brine system to instruct its utility. The presented method yields significant microstructural information in improving our understanding how microstructure influences the macroscopic behaviour of composites without any intricate mathematics.Comment: 4 pages, 5 figures and 1 tabl

    Quantum mechanical virial theorem in systems with translational and rotational symmetry

    Full text link
    Generalized virial theorem for quantum mechanical nonrelativistic and relativistic systems with translational and rotational symmetry is derived in the form of the commutator between the generator of dilations G and the Hamiltonian H. If the conditions of translational and rotational symmetry together with the additional conditions of the theorem are satisfied, the matrix elements of the commutator [G, H] are equal to zero on the subspace of the Hilbert space. Normalized simultaneous eigenvectors of the particular set of commuting operators which contains H, J^{2}, J_{z} and additional operators form an orthonormal basis in this subspace. It is expected that the theorem is relevant for a large number of quantum mechanical N-particle systems with translational and rotational symmetry.Comment: 24 pages, accepted for publication in International Journal of Theoretical Physic

    Theoretical Aspects of Transient Electromagnetic Field in Finite Sized Conducting Media

    Get PDF
    It is generally accepted that electromagnetic disturbances diffuse into the bulk region of highly conducting media instead of propagating with wave-like characteristics [1]. This can be explained based on the fact that the high frequency components of the electromagnetic field decay rapidly, leaving the electromagnetic state in the bulk material quasistatic. For the application of this phenomena to practical testing, Ross et al. developed a formalism describing the diffusion of electromagnetic field in a finite thickness conductor and demonstrated the effect of thickness on the time rate of damping of field amplitude [2]

    Mathematical Constraint on Functions with Continuous Second Partial Derivatives

    Full text link
    A new integral identity for functions with continuous second partial derivatives is derived. It is shown that the value of any function f(r,t) at position r and time t is completely determined by its previous values at all other locations r' and retarded times t'<t, provided that the function vanishes at infinity and has continuous second partial derivatives. Functions of this kind occur in many areas of physics and it seems somewhat surprising that they are constrained in this way.Comment: 10 pages, 6 figure

    Diffraction of light by topological defects in liquid crystals

    Full text link
    We study light scattering by a hedgehog-like and linear disclination topological defects in a nematic liquid crystal by a metric approach. Light propagating near such defects feels an effective metric equivalent to the spatial part of the global monopole and cosmic string geometries. We obtain the scattering amplitude and the differential and total scattering cross section for the case of the hedgehog defect, in terms of the characteristic parameters of the liquid crystal. Studying the disclination case, a cylindrical partial wave method is developed. As an application of the previous developments, we also examine the temperature influence on the localization of the diffraction patterns.Comment: Correcting some typos,15 pages, 3 figures, accepted for publication in Liquid Crystal
    corecore