1,108 research outputs found

    Rigorous treatment of barycentric stellar motion: Perspective and light-time effects in astrometric and radial velocity data

    Full text link
    High-precision astrometric and radial-velocity observations require accurate modelling of stellar motions in order to extrapolate measurements over long time intervals, and to detect deviations from uniform motion caused for example by unseen companions. We aim to explore the simplest possible kinematic model of stellar motions, namely that of uniform rectilinear motion relative to the Solar System Barycentre, in terms of observable quantities including error propagation. The apparent path equation for uniform rectilinear motion is solved analytically in a classical (special-relativistic) framework, leading to rigorous expressions which relate the (apparent) astrometric parameters and radial velocity to the (true) kinematic parameters of the star in the barycentric reference system. We present rigorous and explicit formulae for the transformation of stellar positions, parallaxes, proper motions, and radial velocities from one epoch to another, assuming uniform rectilinear motion and taking into account light-time effects. The Jacobian matrix of the transformation is also given, allowing accurate and reversible propagation of errors over arbitrary time intervals. The light-time effects are generally very small but exceeds 0.1 mas or 0.1 m/s over 100 yr for at least 33 stars in the Hipparcos Catalogue. For high-velocity stars within a few tens of pc from the Sun light-time effects are generally more important than the effects of the curvature of their orbits in the Galactic potential.Comment: Accepted for publication in A&

    Gaia astrometry for stars with too few observations - a Bayesian approach

    Full text link
    Gaia's astrometric solution aims to determine at least five parameters for each star, together with appropriate estimates of their uncertainties and correlations. This requires at least five distinct observations per star. In the early data reductions the number of observations may be insufficient for a five-parameter solution, and even after the full mission many stars will remain under-observed, including faint stars at the detection limit and transient objects. In such cases it is reasonable to determine only the two position parameters. Their formal uncertainties would however grossly underestimate the actual errors, due to the neglected parallax and proper motion. We aim to develop a recipe to calculate sensible formal uncertainties that can be used in all cases of under-observed stars. Prior information about the typical ranges of stellar parallaxes and proper motions is incorporated in the astrometric solution by means of Bayes' rule. Numerical simulations based on the Gaia Universe Model Snapshot (GUMS) are used to investigate how the prior influences the actual errors and formal uncertainties when different amounts of Gaia observations are available. We develop a criterion for the optimum choice of priors, apply it to a wide range of cases, and derive a global approximation of the optimum prior as a function of magnitude and galactic coordinates. The feasibility of the Bayesian approach is demonstrated through global astrometric solutions of simulated Gaia observations. With an appropriate prior it is possible to derive sensible positions with realistic error estimates for any number of available observations. Even though this recipe works also for well-observed stars it should not be used where a good five-parameter astrometric solution can be obtained without a prior. Parallaxes and proper motions from a solution using priors are always biased and should not be used.Comment: Revised version, accepted 21st of August 2015 for publication in A&

    Impact of basic angle variations on the parallax zero point for a scanning astrometric satellite

    Full text link
    Determination of absolute parallaxes by means of a scanning astrometric satellite such as Hipparcos or Gaia relies on the short-term stability of the so-called basic angle between the two viewing directions. Uncalibrated variations of the basic angle may produce systematic errors in the computed parallaxes. We examine the coupling between a global parallax shift and specific variations of the basic angle, namely those related to the satellite attitude with respect to the Sun. The changes in observables produced by small perturbations of the basic angle, attitude, and parallaxes are calculated analytically. We then look for a combination of perturbations that has no net effect on the observables. In the approximation of infinitely small fields of view, it is shown that certain perturbations of the basic angle are observationally indistinguishable from a global shift of the parallaxes. If such perturbations exist, they cannot be calibrated from the astrometric observations but will produce a global parallax bias. Numerical simulations of the astrometric solution, using both direct and iterative methods, confirm this theoretical result. For a given amplitude of the basic angle perturbation, the parallax bias is smaller for a larger basic angle and a larger solar aspect angle. In both these respects Gaia has a more favourable geometry than Hipparcos. In the case of Gaia, internal metrology is used to monitor basic angle variations. Additionally, Gaia has the advantage of detecting numerous quasars, which can be used to verify the parallax zero point.Comment: 8 pages, 2 figures; Accepted for publication in Astronomy & Astrophysic

    Super-critically accreting stellar-mass black holes as ultraluminous X-ray sources

    Full text link
    We derive the luminosity-temperature relation for the super-critically accreting black holes (BHs) and compare it to the data on ultraluminous X-ray sources (ULXs). At super-Eddington accretion rates, an outflow forms within the spherization radius. We construct the accretion disc model accounting for the advection and the outflow, and compute characteristic disc temperatures. The bolometric luminosity exceeds the Eddington luminosity L_Edd by a logarithmic factor 1+0.6 ln mdot (where mdot is the accretion rate in Eddington units) and the wind kinetic luminosity is close to L_Edd. The apparent luminosity for the face-on observer is 2-7 times higher because of geometrical beaming. Such an observer has a direct view of the inner hot accretion disc, which has a peak temperature T_max of a few keV in stellar-mass BHs. The emitted spectrum extends as a power-law F_E ~ E**{-1} down to the temperature at the spherization radius T_sp ~ mdot**(-1/2) keV. We associate T_max with a few keV spectral components and T_sp with the soft, 0.1-0.2 keV components observed in ULXs. An edge-on observer sees only the soft emission from the extended envelope, with the photosphere radius exceeding the spherization radius by orders of magnitude. The dependence of the photosphere temperature on luminosity is consistent with that observed in the super-Eddington accreting BHs SS 433 and V4641 Sgr. Strong outflows combined with the large intrinsic X-ray luminosity of the central BH explain naturally the presence of the photoionized nebulae around ULXs. An excellent agreement between the model and the observational data strongly argues in favour of ULXs being super-critically accreting, stellar-mass BHs similar to SS 433, but viewed close to the symmetry axis.Comment: 8 pages, 5 figures; heavily revised version; accepted to MNRA

    The method of composition and structural analysis in the system of professional training of designer

    Full text link
    In the formation of the professional competences of the designer, his compositional and design skills, an effective method is the composition and structural analysis that allows stimulating the creative search of designer in his own conceptual projects. In the article, the professional training of designers is considered within the framework of higher educationВ формировании профессиональных компетенций дизайнера, его композиционных и проектировочных умений, эффективным методом является композиционно-структурный анализ, позволяющий стимулировать творческий поиск дизайнера в собственных концептуальных проектах. В статье профессиональная подготовка дизайнеров рассматривается в рамках вузовского образовани

    Charged Current Neutrino Cross Section and Tau Energy Loss at Ultra-High Energies

    Full text link
    We evaluate both the tau lepton energy loss produced by photonuclear interactions and the neutrino charged current cross section at ultra-high energies, relevant to neutrino bounds with Earth-skimming tau neutrinos, using different theoretical and phenomenological models for nucleon and nucleus structure functions. The theoretical uncertainty is estimated by taking different extrapolations of the structure function F2 to very low values of x, in the low and moderate Q2 range for the tau lepton interaction and at high Q2 for the neutrino-nucleus inelastic cross section. It is at these extremely low values of x where nuclear shadowing and parton saturation effects are unknown and could be stronger than usually considered. For tau and neutrino energies E=10^9 GeV we find uncertainties of a factor 4 for the tau energy loss and of a factor 2 for the charged current neutrino-nucleus cross section.Comment: 20 pages and 11 figure
    corecore