439 research outputs found

    Determination of Gd concentration profile in UO2-Gd2O3 fuel pellets

    Full text link
    A transversal mapping of the Gd concentration was measured in UO2-Gd2O3 nuclear fuel pellets by electron paramagnetic resonance spectroscopy (EPR). The quantification was made from the comparison with a Gd2O3 reference sample. The nominal concentration in the pellets is UO2: 7.5 % Gd2O3. A concentration gradient was found, which indicates that the Gd2O3 amount diminishes towards the edges of the pellets. The concentration varies from (9.3 +/- 0.5)% in the center to (5.8 +/- 0.3)% in one of the edges. The method was found to be particularly suitable for the precise mapping of the distribution of Gd3+ ions in the UO2 matrix.Comment: 10 pages, 5 figures, 2 tables. Submitted to Journal of Nuclear Material

    A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect

    Full text link
    A scanning tunneling microscopy based potentiometry technique for the measurements of the local surface electric potential is presented and illustrated by experiments performed on current-carrying thin tungsten films. The obtained results demonstrate a sub-millivolt resolution in the measured surface potential. The application of this potentiometry technique to the local sensing of the spin Hall effect is outlined and some experimental results are reported.Comment: 9 pages and 4 figure

    Pure spin current manipulation in antiferromagnetically exchange coupled heterostructures

    Get PDF
    We present a model to describe the spin currents generated by ferromagnet/spacer/ferromagnet exchange coupled trilayer systems and heavy metal layers with strong spin-orbit coupling. By exploiting the magnitude of the exchange coupling (oscillatory RKKY-like coupling) and the spin-flop transition in the magnetization process, it has been possible to produce spin currents polarized in arbitrary directions. The spin-flop transition of the trilayer system originates pure spin currents whose polarization vector depends on the exchange field and the magnetization equilibrium angles. We also discuss a protocol to control the polarization sign of the pure spin current injected into the metallic layer by changing the initial conditions of magnetization of the ferromagnetic layers previously to the spin pumping and inverse spin Hall effect experiments. The small differences in the ferromagnetic layers lead to a change in the magnetization vector rotation that permits the control of the sign of the induced voltage components due to the inverse spin Hall effect. Our results can lead to important advances in hybrid spintronic devices with new functionalities, particularly, the ability to control microscopic parameters such as the polarization direction and the sign of the pure spin current through the variation of macroscopic parameters, such as the external magnetic field or the thickness of the spacer in antiferromagnetic exchange coupled systems.Fil: Avilés Félix, L.. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Butera, Alejandro Ricardo. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: González Chávez, D. E.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Sommer, R. L.. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Gomez, Javier Enrique. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Resonancias Magnéticas; Argentin

    Neuronal bursting: interactions of the persistent sodium and CAN currents

    Get PDF
    The pre-Botzinger complex (pBC) is a heterogeneous neuronal network within the mammalian brainstem and has been experimentally found to generate robust, synchronous bursts [1]. Significant modeling research has been conducted on characterizing the dynamics of individual neurons within the pBC. [2, 3] It is well known that the persistent sodium current (INaP) contributes to square-wave bursting seen in the pBC [4]. Recent experimental work within the pBC identified a signaling cascade that starts with presynaptic glutamate and ends with the release of intracellular calcium that activates a nonspecific cationic current (ICAN) [5]. A subsequent model demonstrated that ICAN may contribute to bursts within the pBC that exhibit depolarization block [6]. With these two mechanisms for generating bursts present within the pBC, an open question is how do they combine to generate the robust bursts seen in the network? The present work seeks to analyze the result of including both INaP and ICAN within the same model. We consider the effects of heterogeneity in the conductance gNaP of INaP and the conductance gCAN of ICAN; with this heterogeneity in mind, the model cell may be quiescent, tonically active, have only square-wave bursts, have only depolarization-block exhibiting bursts, or may show both types of bursting. Using the mathematical tools of bifurcation analysis and slow-fast decomposition, we illuminate the mechanisms underlying the transitions of a model cell between the types of dynamics listed above. Our results show that, in cases where gCAN is relatively high, increasing gNaP increases the range of gCAN where the resultant cell has depolarization-block exhibiting bursts. On the other hand, when gCAN is relatively low, increasing gNaP may cause the cell to transition from quiescence, to square wave bursting, to tonic activity, to square wave bursts with high duty cycles, and finally further increase of gNaP causes the cell to again be tonically active. The latter two transitions do not occur if ICAN is absent. The interactions of ICAN and INaP are relevant to many systems beyond the pBC. Individually, ICAN and INaP have been focused on as important to rhythmic burst generation in other systems such as the entorhinal cortex [7]; however, it is likely that both currents are present in these systems. Thus, a detailed account for the interaction of ICAN and INaP may help explain the rhythm generation encountered in other systems beyond the pBC

    The RANLUX generator: resonances in a random walk test

    Get PDF
    Using a recently proposed directed random walk test, we systematically investigate the popular random number generator RANLUX developed by Luescher and implemented by James. We confirm the good quality of this generator with the recommended luxury level. At a smaller luxury level (for instance equal to 1) resonances are observed in the random walk test. We also find that the lagged Fibonacci and Subtract-with-Carry recipes exhibit similar failures in the random walk test. A revised analysis of the corresponding dynamical systems leads to the observation of resonances in the eigenvalues of Jacobi matrix.Comment: 18 pages with 14 figures, Essential addings in the Abstract onl
    corecore