197 research outputs found

    Towards spin injection from silicon into topological insulators: Schottky barrier between Si and Bi2Se3

    Full text link
    A scheme is proposed to electrically measure the spin-momentum coupling in the topological insulator surface state by injection of spin polarized electrons from silicon. As a first approach, devices were fabricated consisting of thin (<100nm) exfoliated crystals of Bi2Se3 on n-type silicon with independent electrical contacts to silicon and Bi2Se3. Analysis of the temperature dependence of thermionic emission in reverse bias indicates a barrier height of 0.34 eV at the Si-Bi2Se3 interface. This robust Schottky barrier opens the possibility of novel device designs based on sub-band gap internal photoemission from Bi2Se3 into Si

    Terahertz Kerr and Reflectivity Measurements on the Topological Insulator Bi2Se3

    Full text link
    We report the first terahertz Kerr measurements on bulk crystals of the topological insulator Bi2Se3. At T=10K and fields up to 8T, the real and imaginary Kerr angle and reflectance measurements utilizing both linearly and circularly polarized incident radiation were measured at a frequency of 5.24meV. A single fluid free carrier bulk response can not describe the line-shape. Surface states with a small mass and surprisingly large associated spectral weight quantitatively fit all data. However, carrier concentration inhomogeneity has not been ruled out. A method employing a gate is shown to be promising for separating surface from bulk effects.Comment: 10 pages, 5 figure

    Superconductivity, magnetic order, and quadrupolar order in the filled skutterudite system Pr1−x_{1-x}Ndx_{x}Os4_4Sb12_{12}

    Full text link
    Superconductivity, magnetic order, and quadrupolar order have been investigated in the filled skutterudite system Pr1−x_{1-x}Ndx_{x}Os4_4Sb12_{12} as a function of composition xx in magnetic fields up to 9 tesla and at temperatures between 50 mK and 10 K. Electrical resistivity measurements indicate that the high field ordered phase (HFOP), which has been identified with antiferroquadruoplar order, persists to xx ∼\sim 0.5. The superconducting critical temperature TcT_c of PrOs4_4Sb12_{12} is depressed linearly with Nd concentration to xx ∼\sim 0.55, whereas the Curie temperature TFMT_{FM} of NdOs4_4Sb12_{12} is depressed linearly with Pr composition to (1−x1-x) ∼\sim 0.45. In the superconducting region, the upper critical field Hc2(x,0)H_{c2}(x,0) is depressed quadratically with xx in the range 0 << xx ≲\lesssim 0.3, exhibits a kink at xx ≈\approx 0.3, and then decreases linearly with xx in the range 0.3 ≲\lesssim xx ≲\lesssim 0.6. The behavior of Hc2(x,0)H_{c2}(x,0) appears to be due to pair breaking caused by the applied magnetic field and the exhange field associated with the polarization of the Nd magnetic moments, in the superconducting state. From magnetic susceptibility measurements, the correlations between the Nd moments in the superconducting state appear to change from ferromagnetic in the range 0.3 ≲\lesssim xx ≲\lesssim 0.6 to antiferromagnetic in the range 0 << xx ≲\lesssim 0.3. Specific heat measurements on a sample with xx == 0.45 indicate that magnetic order occurs in the superconducting state, as is also inferred from the depression of Hc2(x,0)H_{c2}(x,0) with xx.Comment: 7 pages, 7 figures, currently submitted to Phys. Rev.

    Optical study of interactions in a d-electron Kondo lattice with ferromagnetism

    Full text link
    We report on a comprehensive optical, transport and thermodynamic study of the Zintl compound Yb14_{14}MnSb11_{11}, demonstrating that it is the first ferromagnetic Kondo lattice compound in the underscreened limit. We propose a scenerio whereby the combination of Kondo and Jahn-Teller effects provides a consistent explanation of both transport and optical data.Comment: 4 page

    Parallel suppression of superconductivity and Fe moment in the collapsed tetragonal phase of Ca0.67Sr0.33Fe2As2 under pressure

    Get PDF
    Using non-resonant Fe K-beta x-ray emission spectroscopy, we reveal that Sr-doping of CaFe2As2 decouples the Fe moment from the volume collapse transition, yielding a collapsed-tetragonal, paramagnetic normal state out of which superconductivity develops. X-ray diffraction measurements implicate the c-axis lattice parameter as the controlling criterion for the Fe moment, promoting a generic description for the appearance of pressure-induced superconductivity in the alkaline-earth-based 122 ferropnictides (AFe2As2). The evolution of the superconducting critical temperature with pressure lends support to theories for superconductivity involving unconventional pairing mediated by magnetic fluctuations
    • …
    corecore