3 research outputs found

    Balancing the double‐edged sword effect of increased resistant starch content and its impact on rice texture: its genetics and molecular physiological mechanisms

    Get PDF
    Resistant starch (RS) is the portion of starch that escapes gastrointestinal digestion and acts as a substrate for fermentation of probiotic bacteria in the gut. Aside from enhancing gut health, RS contributes to a lower glycemic index. A genome‐wide association study coupled with targeted gene association studies was conducted utilizing a diverse panel of 281 resequenced Indica rice lines comprising of ~2.2 million single nucleotide polymorphisms. Low‐to‐intermediate RS phenotypic variations were identified in the rice diversity panel, resulting in novel associations of RS to several genes associated with amylopectin biosynthesis and degradation. Selected rice lines encoding superior alleles of SSIIa with medium RS and inferior alleles with low RS groups were subjected to detailed transcriptomic, metabolomic, non‐starch dietary fibre (DF), starch structural and textural attributes. The gene regulatory networks highlighted the importance of a protein phosphatase alongside multiple genes of starch metabolism. Metabolomics analyses resulted in the identification of several metabolite hubs (carboxylic acid, sugars and polyamines) in the medium RS group. Among DF, mannose and galactose from the water‐insoluble fraction were found to be highly associated with low and medium RS lines, respectively. Starch structural analyses revealed that a moderate increase in RS is also linked to an elevation of amylose 1 and amylose 2 fractions. Although rice lines with medium RS content negatively affected textural and viscosity properties in comparison to low RS, the textural property of medium RS lines was in the same acceptable range as IR64, a rice mega variety popular in Asia

    Intrinsic and Extrinsic Factors affecting Rice Starch digestability

    No full text
    Background The current incidence of obesity and type 2 diabetes is at global epidemic levels. To mitigate their impact, there is a need to develop starch-containing foods that give rise to a low and stable postprandial blood glucose response by increasing the proportion of slowly-digestible and indigestible carbohydrate content. Rice is an ideal target food for such dietary intervention because it is a staple food for over half the world's population. Scope and approach The starch digestion of cooked white rice grains is usually complete or near complete upon consumption, but the rate of digestion is influenced by intrinsic food properties and extrinsic influences. This review provides an overview of the complex interplay between the starch granule and its interaction with non-starch components of the rice grain (intrinsic characteristics) as well as the effects of processing (extrinsic factors) on starch digestibility. Key findings and conclusions The intrinsic properties of white rice grains play a significant role in starch digestibility which can be further enhanced after processing, especially by gelatinisation and retrogradation. Post-harvest storage conditions of rice were found to influence starch digestibility but this effect was temperature-dependent. Limited studies investigated starch-lipid and starch-protein interactions in rice, but changes to substrate accessibility have been implicated. Improving our understanding of the effects of processing on starch digestibility can provide an effective tool for food manufacturers to regulate starch digestibility of existing rice varieties

    Prospects of breeding high-quality rice using post-genomic tools

    No full text
    corecore