14 research outputs found

    Molecular and Behavioral Analysis of \u3cem\u3eDrosophila\u3c/em\u3e Circadian Photoreception and Circadian Thermoreception: A Dissertation

    Get PDF
    Circadian clocks are biological timekeepers that help maintain an organism’s behavior and physiological state optimally timed to the Earth’s day/night cycle. To do this, these internal pacemakers must accurately keep track of time. Equally importantly, they must be able to adjust their oscillations in response to external time cues to remain properly synchronized with the environment, and correctly anticipate environmental changes. When the internal clock is offset from its surrounding day/night cycle, clinically relevant disruptions develop, ranging from inconveniences such as jet-lag to more severe problems such as sleep disorders or mood disorders. In this work, I have used the fruit fly, Drosophila melanogaster, as a model organism to investigate how light and temperature can synchronize circadian systems. My initial studies centered on an intracellular photoreceptor, CRYPTOCHROME (CRY). CRY is a blue light photoreceptor previously identified as a major component of the primary light-input pathway into the Drosophila circadian clock. We used molecular techniques to show that after light-activation, CRY binds to the key circadian molecule TIMELESS (TIM). This interaction irreversibly targets TIM, but not CRY, for degradation. Further studies characterizing a newly isolated cry mutant, crym, showed that the carboxyl-terminus of CRY is not necessary for CRY’s ability to impart photic information to the molecular clock. Instead, the C-terminus appears to be necessary for normal CRY stability and protein-protein interactions. Thus, we conclude that in contrast to previous reports on CRYs of other species, where the C-terminal domain was required for transduction of photic information, the C-terminus of DrosophilaCRY has a purely modulatory function. During the second part of my dissertation work, I focused my studies on circadian thermoreception. While the effects of light in synchronization of the Drosophilaclock to environmental cycles have been extensively characterized, significantly less is known about temperature input pathways into the circadian pacemaker. I have used two approaches to look at how temperature affects the circadian system. First, I conducted a series of behavioral analyses looking at how locomotor rhythms can be phase-shifted in response to temperature cycles. By examining the behavior of genetically ablated flies, we determined that the well-characterized neurons controlling morning and evening surges of activity during light/dark cycles are also implicated in morning and evening behaviors under temperature cycles. However, we also find evidence of cells that contribute to modulating afternoon and evening behavior specifically under temperature cycles. These data contribute to a growing number of studies in the field suggesting that pacemaker cells may play different roles under various environmental conditions. Additionally, we provide data showing that intercellular communication plays an important role in regulating circadian response to temperature cycles. When the morning oscillator is absent or attenuated, the evening cells respond abnormally quickly to temperature cycles. My work thus provides information on the roles of different cell groups during temperature cycles, and suggests that beyond simply synchronizing individual oscillating cells, intercellular network activity may also have a role in modulating proper response to environmental time cues. Finally, I present some preliminary work looking at effects of temperature on known circadian molecules. Using a combination of in vivo and cell culture techniques, I have found that TIM protein levels decrease at higher temperatures. My cell culture data suggest that this is a proteasome-independent degradation event. As TIM is also a key molecule in the light-input pathway, the stability of TIM proteins may be a key point of integration for light and temperature input pathways. While additional research needs to be conducted to confirm these effects in vivoin wild-type flies, these preliminary results identify a possible avenue for further study. Taken together, my work has contributed new data on both molecular and neuronal substrates involved in processing light and temperature inputs into the Drosophila circadian clock

    Interactions between circadian neurons control temperature synchronization of Drosophila behavior

    Get PDF
    Most animals rely on circadian clocks to synchronize their physiology and behavior with the day/night cycle. Light and temperature are the major physical variables that can synchronize circadian rhythms. Although the effects of light on circadian behavior have been studied in detail in Drosophila, the neuronal mechanisms underlying temperature synchronization of circadian behavior have received less attention. Here, we show that temperature cycles synchronize and durably affect circadian behavior in Drosophila in the absence of light input. This synchronization depends on the well characterized and functionally coupled circadian neurons controlling the morning and evening activity under light/dark cycles: the M cells and E cells. However, circadian neurons distinct from the M and E cells are implicated in the control of rhythmic behavior specifically under temperature cycles. These additional neurons play a dual role: they promote evening activity and negatively regulate E cell function in the middle of the day. We also demonstrate that, although temperature synchronizes circadian behavior more slowly than light, this synchronization is considerably accelerated when the M cell oscillator is absent or genetically altered. Thus, whereas the E cells show great responsiveness to temperature input, the M cells and their robust self-sustained pacemaker act as a resistance to behavioral synchronization by temperature cycles. In conclusion, the behavioral responses to temperature input are determined by both the individual properties of specific groups of circadian neurons and their organization in a neural network

    PER-TIM Interactions with the Photoreceptor Cryptochrome Mediate Circadian Temperature Responses in Drosophila

    Get PDF
    Drosophila cryptochrome (CRY) is a key circadian photoreceptor that interacts with the period and timeless proteins (PER and TIM) in a light-dependent manner. We show here that a heat pulse also mediates this interaction, and heat-induced phase shifts are severely reduced in the cryptochrome loss-of-function mutant cryb. The period mutant perL manifests a comparable CRY dependence and dramatically enhanced temperature sensitivity of biochemical interactions and behavioral phase shifting. Remarkably, CRY is also critical for most of the abnormal temperature compensation of perL flies, because a perL; cryb strain manifests nearly normal temperature compensation. Finally, light and temperature act together to affect rhythms in wild-type flies. The results indicate a role for CRY in circadian temperature as well as light regulation and suggest that these two features of the external 24-h cycle normally act together to dictate circadian phase

    Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception

    No full text
    CRYPTOCHROME (CRY) is the primary circadian photoreceptor in Drosophila. We show that CRY binding to TIMELESS (TIM) is light-dependent in flies and irreversibly commits TIM to proteasomal degradation. In contrast, CRY degradation is dependent on continuous light exposure, indicating that the CRY-TIM interaction is transient. A novel cry mutation (cry(m)) reveals that CRY\u27s photolyase homology domain is sufficient for light detection and phototransduction, whereas the carboxyl-terminal domain regulates CRY stability, CRY-TIM interaction, and circadian photosensitivity. This contrasts with the function of Arabidopsis CRY domains and demonstrates that insect and plant cryptochromes use different mechanisms

    Survival of retinal ganglion cells after damage to the occipital lobe in humans is activity dependent

    No full text
    Damage to the optic radiations or primary visual cortex leads to blindness in all or part of the contralesional visual field. Such damage disconnects the retina from its downstream targets and, over time, leads to trans-synaptic retrograde degeneration of retinal ganglion cells. To date, visual ability is the only predictor of retinal ganglion cell degeneration that has been investigated after geniculostriate damage. Given prior findings that some patients have preserved visual cortex activity for stimuli presented in their blind field, we tested whether that activity explains variability in retinal ganglion cell degeneration over and above visual ability. We prospectively studied 15 patients (four females, mean age = 63.7 years) with homonymous visual field defects secondary to stroke, 10 of whom were tested within the first two months after stroke. Each patient completed automated Humphrey visual field testing, retinotopic mapping with functional magnetic resonance imaging, and spectral-domain optical coherence tomography of the macula. There was a positive relation between ganglion cell complex (GCC) thickness in the blind field and early visual cortex activity for stimuli presented in the blind field. Furthermore, residual visual cortex activity for stimuli presented in the blind field soon after the stroke predicted the degree of retinal GCC thinning six months later. These findings indicate that retinal ganglion cell survival after ischaemic damage to the geniculostriate pathway is activity dependent
    corecore